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Abstract— The huge domain gap between sketches and photos
poses huge challenges for Sketch-Based Image Retrieval (SBIR).
The Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) is more
generic and practical but brings an even greater challenge:
the additional knowledge gap between the seen and unseen
categories. In order to simultaneously mitigate both gaps,
we propose an Approaching-and-Centralizing Network (termed
“ACNet”) to jointly optimize sketch-to-photo synthesis and image
retrieval. The retrieval module guides the synthesis module to
generate large amounts of diverse photo-like images that help
the sketch domain gradually approach the photo domain to
eliminate the domain gap, and thus better serves retrieval.
Meanwhile, the retrieval module itself centralizes the embeddings
of training samples for learning a similarity measurement to
eliminate the knowledge gap. Our approach is simple yet effec-
tive, which achieves state-of-the-art performance on two widely
used ZS-SBIR datasets and surpasses previous methods by a
large margin (e.g., 8.2% improvement in terms of mAP@all on
TU-Berlin Extended dataset).

Index Terms— Sketch-based image retrieval, zero-shot learn-
ing, metric learning, deep learning.

I. INTRODUCTION

SKETCH-BASED Image Retrieval (SBIR) [1], [2], [3], [4],
[5], [6] aims to perform cross-domain image retrieval

among the photos and sketches drawn by humans. Touch-
screen devices (e.g., smartphones and iPads) enable us to
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draw free-hand sketches conveniently. The drawn sketches are
regarded as queries and the retrieval system is expected to
return some relevant photos according to the user’s intent.
Considering the lack of colors, textures and detailed structural
information, the sketches are highly iconic, succinct and
abstract. The huge domain gap and the asymmetrical infor-
mation between sketches and photos pose great challenges
for SBIR. Category labels provide supervision to the retrieval
model for overcoming the gap, but the model may take
shortcuts [7] to overfit the category labels by paying too much
attention to category-specific samples, feature representations,
and their specific distributions, turning the retrieval problem
into a classification problem. The follow-up Zero-Shot Sketch-
Based Image Retrieval (ZS-SBIR) is introduced in [8] in
a more practical and realistic setting, where the test data
are from unseen categories. The knowledge gap between
seen categories and unseen categories makes ZS-SBIR more
intractable. The domain gap and knowledge gap are the two
biggest challenges for ZS-SBIR.

To simultaneously mitigate both gaps, we design a novel,
simple, and effective approaching and centralizing network
(ACNet), which jointly trains sketch-to-photo synthesis and
image retrieval, as shown in Fig. 1. The sketch-to-photo
synthesis module encourages the retrieval module to focus
more on domain-agnostic information for proper similarity
measurement. This is done by constantly refining and feeding
the synthesized photo-like images into the retrieval module
during the training phase. Even though there are some noise
and uncertainty introduced along with the synthesis, the con-
tinuously generated and refined images are of high diversity,
which gradually approach the photo domain and thus benefit
training a robust retrieval module. Meanwhile, the retrieval
module is designed to centralize the embeddings of images
by using a centralized proxy rather than the specific training
samples to represent each category. Therefore, it can learn
a cross-domain similarity measurement that is aware of the
overall category differences yet insensitive to the specific
sample distribution in each category.

We choose CycleGAN [9] as our synthesis module due
to its simplicity and effectiveness, and other image-to-image
translation networks can also be applied. For the retrieval
module, we utilize the NormSoftmax [10] loss to centralize
the embeddings of both sketches and photos belonging to
the same category. These two modules are jointly trained to
ensure that both the domain gap and knowledge gap can be
mitigated as much as possible. Differently, previous pairwise
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Fig. 1. Overview of the proposed ACNet. The sketch-to-photo generator G aims to translate the sketches to photo-like images while D is to distinguish
whether the generated images are real photos and compute Ladv . The identity loss Lide helps generate more photo-like images by forcing G to reconstruct
the real photos. The main pipeline 8 serves as the standard process for embedding learning. The embeddings of the sketches, synthesized images, and photos
from the same category are enforced to be close to the assigned proxy, and far away from other proxies under the constraint of Lnorm . Different colors
indicate the different categories. We design a joint training manner to integrate G and 8. We refer the readers to check the forward and backward procedures
to better understand our joint training scheme.

losses (e.g., Contrastive [11] and Triplet [12]) aim to learn the
similarity measurement by sampling the informative pairs or
triplets in one batch. It is easy for these methods to overfit the
specific training samples, and some may distract the training
by bringing high gradients. The NormSoftmax loss assigns
one proxy as the anchor for each category and learns the
similarity measurement with the gradients from all the samples
belonging to the assigned proxy. This loss function can better
coordinate the relationship between all samples from each
category through proxy-based optimization [13], [14], and can
also better alleviate the influence of noise and uncertainty
introduced by the synthesis module than other existing losses.

The proposed ACNet achieves new state-of-the-art perfor-
mances on two widely used ZS-SBIR datasets. Extensive
ablation studies have been conducted to dissect our method.
Our main contributions can be summarized as follows:

• We propose an “Approaching-and-Centralizing Network
(ACNet)” to integrate sketch-to-photo synthesis and
image retrieval through a joint training manner, which
mitigates both the domain gap and the knowledge gap.

• We adopt the NormSoftmax loss to stabilize our joint
training and promote the generalization ability under the
zero-shot setting, thanks to its centralizing effect driven
by proxy-based optimization.

• Comprehensive ZS-SBIR experiments and ablation stud-
ies on Sketchy Extended [8] and TU-Berlin Extended [15]
datasets demonstrating the superiority of the proposed
ACNet.

II. RELATED WORK

A. Sketch-Based Image Retrieval (SBIR)

SBIR [1], [16] has been studied for decades due to its
commercial and realistic applications [17], [18]. Attempts for
solving the SBIR task mostly focus on bridging the domain
gap between the sketches and photos, which can roughly
be grouped into hand-crafted [1], [2] and cross-domain deep
learning-based methods [11], [12], [19], [20], [21], [22], [23].

Hand-crafted methods [1], [2] mostly work by extracting
the edge map from natural photo images and then matching
them with sketches using a Bag-of-Words model. Due to the
great successes of deep learning methods, various specifically
designed neural networks [3], [4], [5], [6], [24], [25] have been
proposed for SBIR. Classical ranking losses, like contrastive
loss [11], [20], triplet loss [12], [19] or classification loss [10]
have also been introduced.

B. Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR)

SBIR requires all test categories to be seen during train-
ing, which cannot be guaranteed or practical in real-world
applications. The more challenging, generic, and practical ZS-
SBIR [15] task has attracted the attention of the computer
vision community due to its real-world applications, in which
the test categories do not appear in the training stage. Recent
research [8], [26], [27], [28], [29], [30], [31] is exploring solu-
tions for projecting sketches and photos into a shared seman-
tic space to perform accurate cross-domain image retrieval.
However, the huge domain gap and the highly abstract sketch
representations make it very difficult to perform ideal feature-
level content-style disentanglement [7], [26], [27], [28] or
bi-direction synthesis [32].

To bridge the knowledge gap between seen and unseen cate-
gories, existing methods [28], [29], [33], [34], [35], [36], [37],
[38] introduced the semantic embeddings from the extra anno-
tations as class prototypes to present the relationships between
semantic categories in the common space. However, there is
no explicit connection between the embeddings extracted from
visual images and the semantic embeddings borrowed from the
extra annotations. Furthermore, the semantic embeddings from
the language models [39], [40] are computed based on word
co-occurrence frequency. Sometimes, these embeddings are
not reliable [31] and cannot express intra-class visual variation.
In contrast to previous methods, we assign one proxy for
each category and update them adaptively based on the given
training data with the synthesis module.
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C. Sketch-to-Photo Synthesis and Joint Training

Sketch-to-photo synthesis [9], [32], [41], [42], [43], [44],
[45], [46] is a notably challenging task in the field of computer
vision, which aims to generate photo-realistic images from the
given abstract and exaggerated sketches. Sketch2Photo [17]
proposed to compose new photo images using the retrieved
photo images from the given sketch. The semantic seg-
mentation [47] and image blending [48] techniques were
introduced to achieve photo editing according to the user’s
goal. The first deep learning-based free-hand sketch-to-photo
synthesis is SketchyGAN [44], which aims to optimize an
encoder-decoder model based on the aligned sketch-photo
pairs. Ghosh et al. [49] proposed multi-class photo generation
based on incomplete edges or sketches. Sketchformer [50]
designed a sequential sketch-to-photo generation model to
promote the naturalness of the photo images. Liu et al. [32]
conducted unsupervised sketch-to-photo synthesis and further
analyzed the potential of adopting the synthesized images for
retrieval.

Ideally, a perfect sketch-to-photo generator could synthesize
the desired photo images with distinguishable and reliable
feature representations for more accurate image retrieval,
whilst preserving the intra-class and inter-class distribution
after translation. However, the unsupervised domain transla-
tion performance is plagued by the huge domain gap as well
as the highly abstract sketch representations. The translated
photo images still suffer from visual artifacts [51] and noise,
even utilizing the semantic priors [3], [51], [52] and laborious
generative networks [50], [51], [53], [54]. Since the two mod-
ules are optimized separately in existing methods [32], [54],
the noise and uncertainty introduced in the synthesis module
could be propagated to the retrieval module and the error
accumulation could heavily restrict the retrieval performance.
Even if the generated images look realistic to humans, their
benefits may not be able to surpass the harm to the downstream
retrieval task.

Differently, our proposed ACNet jointly optimizes synthesis
and retrieval, and thus ensures a significant performance boost.
First, previous works (e.g., [32], [54]) optimize the sketch-to-
photo module and further retrieval module in the two-stage
training manner. The two modules are optimized separately.
Differently, the proposed method optimizes the two modules
in the joint training manner. The gradient of the retrieval
module is directly propagated to the sketch-to-photo synthe-
sis module and guides the generator on how to synthesize
photo-like images with discriminated feature representations.
Secondly, we only have the forward sketch-to-photo synthesis
and the reconstruction of the photo images compared with the
normal GAN structure, our goal is not to generate images
with good image quality rather than boosting the overall
retrieval performance. Furthermore, the parallel sketch-to-
photo synthesis module could be regarded as an effective
data augmentation, which could promote the robustness of
the retrieval module and also the generalization ability to
unseen images. The synthesis module can help alleviate the
model overfit to training data. Bhunia et al. [55] also designed
joint training, but combined photo-to-sketch synthesis and

fine-grained SBIR through a semi-supervised manner (with
some photo-sketch pairs). We work on ZS-SBIR, and we
argue that some important information will be lost after the
photo-to-sketch synthesis. Our ACNet does not require any
photo-sketch pairs and the gradient of the retrieval module is
directly propagated to the sketch-to-photo synthesis module to
help the photo generation. Besides, we have a more in-depth
dissection of the joint training of synthesis and retrieval.

III. METHOD

A. Problem Formulation

Consider n photos and m sketches denoted as P =

{(pi , ypi )|ypi ∈ Y}
n
i=1, and S = {(si , ysi )|ysi ∈ Y}

m
i=1

respectively. Under the SBIR setting, S and P are divided
into the training set and test set with the same category label
set Y . SBIR aims to retrieve the best matched p j ∈ P
based on a query sketch si in S, such that ysi = yp j .
Under the ZS-SBIR setting, Y is split into Ytra and Ytest ,
in which there is no category overlap between Ytra and Ytest
(Ytra ∩Ytest = ∅). The training data are Stra = {(si , ysi )|ysi ∈

Ytra}, Ptra = {(pi , ypi )|ypi ∈ Ytra}, and the test data are
Stest = {(si , ysi )|ysi ∈ Ytest }, Ptest = {(pi , ypi )|ypi ∈ Ytest }.
The ZS-SBIR model is trained on data (Stra,Ptra), and tested
on (Stest ,Ptest ).

B. Main Pipeline

The overall architecture of the proposed method is illus-
trated in Fig. 1.

1) Approaching by Sketch-to-Photo Synthesis: Suppose the
sketch si from Stra and the photo p j from Ptra , we first aim
to generate a photo-like image s∗

i = G(si ) based on si through
a generator G : Stra → Ptra . The adversarial loss of GAN
architecture can be expressed as:

Ladv = Esi ,p j ∼Pdata(Stra ,Ptra)

[
log D(p j )

]
+Esi ∼Pdata(Stra)

[
log(1 − D(G(si )))

]
, (1)

where D is the discriminator to distinguish whether the
image is from the real photo domain. The goal is to learn
a mapping function, which could generate photo-like images
that match the real photo distribution Pdata(Ptra). After the
sketch-to-photo synthesis, we assign the category label of
si to s∗

i . It is non-trivial to define such label-preserving
synthesis-based transformations, especially when uncertainty
and noise have been introduced with image synthesis. The
synthesized images possess more texture and RGB information
and thus gradually approach the photo domain, which can
better serve cross-domain image retrieval. Considering there
is no pixel-level constraint for G, G would tend to generate
images with visual artifacts. In order to alleviate this problem,
identity loss Lide between p j and G(p j ) is adopted as an addi-
tional constraint, which is firstly proposed in CycleGAN [9],
expressed as:

Lide = EPtra ∥G(p j ) − p j∥1. (2)

Since si and p j share similar semantic contents (e.g., the
category and structure information), we can boost the synthesis
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performance by reconstructing the photos at the same time.
With the full supervision of Lide, we could generate more
photo-like images.

2) Feature Extraction: The sketch si , generated image s∗

i ,
and real photo p j are fed into the same backbone network
to extract features. Like previous methods [29], [31], [34],
we adopt ResNet-50 [56] (denoted as 8) as backbone. The
outputs after max-pooling are transformed into the desir-
able embedding dimension through a fully connected layer.
L2-norm is adopted to obtain the final embedding for the
retrieval task.

3) Centralizing With NormSoftmax: The NormSoftmax
loss [10] is used as our objective function to increase the
inter-class distance and reduce the intra-class distance over the
sketch and photo set. Each category is assigned a learnable
proxy, the learnable proxies are shared between sketches
and photos. They are initialized with values sampled from
the normal distribution N (0, 1). The final embedding x is
enforced to be close to the proxy of its category, and far
away from other proxies, as shown in Fig. 1. This property
ensures that it is learning the similarity measurement rather
than the category itself, so as to ensure that it also has a
certain generalization ability in the category that has not been
seen before, and will not be overfitted to the training data.
It potentially solves the problem of the knowledge gap with
the help of the synthesis module. The objective function for
x is expressed as:

Lnorm(x) = −log(
exp(

xT py
t )∑

z∈Z exp(
xT pz

t )
), (3)

where Z is the set of all proxies, py is the proxy of x , t
is temperature scale. We set t = 0.05 following the default
setting in [10]. Based on the three inputs (si , p j and s∗

i ) of
our backbone network, we can get three losses described as:

Lsi
norm = Lnorm(8(si )), (4)

Lp j
norm = Lnorm(8(p j )), (5)

Ls∗
i

norm = Lnorm(8(s∗

i )), (6)

with Ls∗
i

norm we can better reduce the domain gap between the
sketch and photo domain through the intermediate synthesized
images. The final NormSoftmax loss is expressed by aggre-
gating these three losses as:

Lnorm = Lsi
norm + Lp j

norm + Ls∗
i

norm . (7)

4) Final Objective Function: The final objective function
for G, D and 8 is described as:

L(G, D, 8) = Ladv + λLnorm + γLide, (8)

where λ and γ are hyper-parameters to balance the contri-
bution of each component. We set λ = 10 and γ = 0.1 in
our experiments and provide comprehensive experiments using
different values of λ and γ in Section IV-E.

5) Joint Approaching and Centralizing: We optimize G
and 8 through a joint training manner and the synthesized
images are constantly fed into 8. Through the sketch-to-photo
synthesis, we could generate sufficient photo-like examples
with high data diversity and force 8 to extract more reliable
and effective features under the constraint of Ls∗

i
norm . Besides,

by sufficiently generating samples in the latent space and
enforcing them to be centralized through the proxies in the
embedding space, we could promote the generalization ability
of our backbone network. Our framework is model-agnostic
and we can choose various GAN architectures for synthesis
and backbone networks for feature extraction. We provide
more experiments about different GANs and backbone net-
works in Section IV-E.

6) Inference: In the test phase, G first generates one
photo-like image based on the sketch query, and the generated
image is fed into 8 to obtain the embedding. The cosine
similarity between obtained embedding and photo embeddings
from the gallery is used as the criterion to perform the retrieval
task. We do not conduct reverse photo-to-sketch synthesis
since we are performing sketch-based image retrieval and the
photos are not available at the inference time.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: Two widely used public datasets are tested
in our experiments. The Sketchy Extended dataset contains
75,481 sketches, 73,002 photos (12,500 images from [57]
and 60,502 images from ImageNet [58] organized by
Liu et al. [3]) from 125 categories. We follow the same
zero-shot data partitioning as [8], in which 21 unseen classes
from ImageNet for testing and other classes for training. The
TU-Berlin Extended [59] dataset contains 20,000 sketches
evenly distributed over 250 object categories. 204,070 photo
images collected by Liu et al. [3] are included. The partition
protocol introduced in [15] is used to create zero-shot training
and test sets. 30 randomly picked classes, each of which
includes at least 400 photo images, are used for testing, and
other classes are used for training.

2) Implementation Details: Following the previous meth-
ods [8], [26], [27], [29], [31], [33], [34], ResNet-50 [56] is
adopted as the backbone network, and the embedding dimen-
sion is 512. The image resolution is set to 224 × 224 and the
batch size is 64. Only random horizontal flipping is conducted
for data augmentation. We follow the generator architecture
of the vanilla CycleGAN [9] and design our sketch-to-photo
generator G. The PatchGAN discriminator [60] architecture is
adopted for designing D. We refer the readers to check Table I
and Table III for more details. Please note that we only design
the forward sketch-to-photo generator. Furthermore, to reduce
the inference time and computational cost, we modify the
channel number of the first convolutional layer to 8, and the
number of residual blocks to 8, so that our generator is very
lightweight. Similarly, we set the channel number of the first
convolutional layer in D to 8. All the models are warm-up with
1 epoch and have been optimized with 10 epochs. We choose
Adam [61] with learning rate of 1e−3 for optimization. Our
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TABLE I
THE NETWORK CONFIGURATION OF G . c IS THE NUMBER OF CHANNELS

OF THE FIRST CONVOLUTION LAYER. CIR, RB AND DIR INDICATE
THE CONV-INSTANCENORM-RELU BLOCK, RESIDUAL BLOCK

AND DECONV-INSTANCENORM-RELU BLOCK, RESPECTIVELY

code is implemented with PyTorch [62] library and the exper-
iments are conducted on the Geforce RTX 3090 GPU. The
code of our work is available on https://github.com/
leftthomas/ACNet. The ZS-SBIR experimental results of
using different architectures of G are included in Section IV-E.

3) Evaluation Metrics: Precision (Prec) and mean Average
Precision (m AP) are two main metrics for the evaluation of
ZS-SBIR task [15]. For a fair comparison, we follow the
standard evaluation method [34]. Prec is calculated for top
k (i.e., 100, 200) ranked results, and m AP is computed for
top k or all ranked results. Higher Prec and m AP indicate
better retrieval performance.

B. Triplet vs. NormSoftmax

We first aim to demonstrate that NormSoftmax loss [10]
is more effective than Triplet loss [12] for the ZS-SBIR
task. We conduct the ZS-SBIR experiments on both Sketchy
Extended [8] and TU-Berlin Extended [15] datasets. The
quantitative results are reported in Table II. To make a fair
comparison, all the hyper-parameters are set to the same. The
Triplet loss can only achieve 35.5% while the NormSoftmax
loss has achieved 45.2% without sketch-to-photo synthesis in
terms of m AP@200 on Sketchy Extended dataset, which has
gained a large performance improvement. The proxy-based
optimization framework could centralize all the samples that
belong to the same proxy and prevent the model from remem-
bering some category-specific samples, which is catastrophic
for the generalization ability to unseen categories. The central-
izing effect of NormSoftmax loss can make the retrieval model
optimized better under category supervision. We can also
observe that the NormSoftmax loss outperforms the Triplet
loss by a large margin on the TU-Berlin Extended dataset,
which indicates that the proxy-based loss has a significant
priority over the triplets-based loss on the ZS-SBIR task.

Triplet loss requires careful hard negative mining among
the mini-batches (locally) and weighting strategies to obtain
the most informative pairs. In contrast to the pair-based loss,
it is substantially easier to optimize NormSoftmax since it

heavily reduces the sampling complexity (from O(N 3) to
O(NC), where N , C are the number of samples and the num-
ber of proxies (globally), respectively, in a mini-batch). The
non-convex Triplet loss can easily lead to local optima [63]
whilst the convex NormSoftmax loss has a globally optimal
solution.

C. Two-Stage Training vs. Joint Training

In this section, we aim to demonstrate the limitations of
the previous two-stage training, which is adopted to miti-
gate the domain gap between the sketches and photos for
the ZS-SBIR. For the first synthesis part, we adopt the
vanilla CycleGAN [9] to perform the unpaired image-to-
image (I2I) translation between the sketches and photos.1 The
train/test split strictly follows the ZS-SBIR setting. After the
unpaired I2I model converges, we adopt the trained sketch-
to-photo generator for inference and translate all the sketch
images into photo-like images. Please note, both training
and test sketch images have been translated to the photo
domain for further training and testing. We then perform the
ZS-SBIR experiments based on the synthesized photo-like
images and the real photo images. The original category
labels of the sketches are inherited for training. We choose
both Triplet loss and the adopted NormSoftmax loss for
optimization and the quantitative results are also reported
in Table II.

Compared with the counterpart results achieved on the
vanilla setting (between the original sketches and photos),
there is a slight performance drop regardless of using Triplet
loss or NormSoftmax loss on Sketchy Extended dataset. As for
TU-Berlin Extended dataset, we can obtain better results based
on NormSoftmax loss by approaching the sketch domain to the
photo domain. In contrast, there is a performance drop while
using Triplet loss for optimization, which also indicates that
NormSoftmax [10] loss has a stronger ability to coordinate
the real samples and the synthesized samples than Triplet [12]
loss. The NormSoftmax loss is more compatible with the
two-stage sketch-to-photo synthesis for data augmentation to
mitigate the domain gap. This also reflects that if the two-
stage sketch-to-photo synthesis module is used as a data
augmentation, it will not consistently improve the retrieval
performance. And compared with our joint training strategy
(Exp 3&6), we can find that joint training has greatly improved
the retrieval performance (i.e., 43.5% → 51.7% in terms
of m AP@200 on Sketchy Extended dataset with Norm-
Softmax loss). Additionally, both in Sketchy Extended and
TU-Berlin Extended datasets, we can see that the performance
improvement is consistent with the usage of NormSoftmax
loss. Though the Triplet loss performs worse on TU-Berlin
Extended dataset, this supports our claim in Section IV-B that
NormSoftmax loss is more robust than Triplet loss.

To better understand the two-stage synthesis results, refer-
ring to [70], we compute the L1 pixel-level distances between
50 randomly sampled instances from each training category

1We adopt the official implementation https://github.com/
junyanz/pytorch-CycleGAN-and-pix2pix following the default
setting.
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TABLE II
THE ZS-SBIR PERFORMANCE COMPARISON UNDER VARIOUS SETTINGS ON SKETCHY EXTENDED [8] AND TU-BERLIN EXTENDED [15] DATASETS:

1) TRIPLET AND NORMSOFTMAX FOR OPTIMIZATION; AND 2) WITH OR WITHOUT SKETCH-TO-PHOTO SYNTHESIS THROUGH TWO-STAGE
TRAINING OR JOINT TRAINING TO MITIGATE THE DOMAIN GAP. THE BEST RESULTS FOR EACH SETTING ARE BOLD

Fig. 2. Histograms of sample distances under two settings on Sketchy Extended [8] and TU-Berlin Extended [15] datasets: 1) between original sketches and
real photos (“w/o synthesis”) and 2) between synthesized images and real photos (“w/ synthesis”).

Fig. 3. T-SNE visualization of sketch and photo embeddings on Sketchy Extended [8] and TU-Berlin Extended [15] datasets. We randomly choose 20 samples
from each of the 10 unseen test categories for visualization. Different colors refer to different categories. The two-stage training strategy cannot obtain more
separable embeddings than the vanilla setting, regardless of using Triplet loss or NormSoftmax loss. We refer the readers to pay more attention to the regions
covered by the same color boxes for better comparison.

under two settings: 1) between the original sketches and the
real photos and 2) between the synthesized images and the
real photos. We provide the distance histogram in Fig. 2 to
illustrate the domain distance. With the two-stage synthesis,

the distances have been reduced a lot on the Sketchy Extended
dataset, which demonstrates that sketch-to-photo synthesis has
effectively mitigated the domain gap. The sketches from the
TU-Berlin Extended dataset are highly abstract, succinct, and
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Fig. 4. T-SNE visualization of sketch and photo embeddings on Sketchy Extended [8] and TU-Berlin Extended [15] datasets under two-stage training and
joint training. We refer the readers to pay more attention to the regions covered by the same color boxes for better comparison.

TABLE III
THE NETWORK CONFIGURATION OF D. c IS THE NUMBER OF CHANNELS

OF THE FIRST CONVOLUTION LAYER. CLR AND CILR INDICATE
THE CONV-LEAKYRELU LAYER AND CONV-INSTANCENORM-

LEAKYRELU LAYER. THE SLOPE FOR THE LEAKYRELU IS 0.2

exaggerated. With the two-stage synthesis, we can still reduce
the domain gap.

Furthermore, we provide the T-SNE visualization of sketch
and photo embeddings in Fig. 3 under the four settings (Exp
1,2,4&5) of Table II. The two-stage training strategy cannot
obtain much more separable embeddings to achieve a large
ZS-SBIR performance gain even though the synthesis can
reduce the domain gap. We attribute this failure to the reason
that the gradients of the retrieval module cannot be directly
utilized for the optimization of the synthesis module. Thus,
the synthesis module has no idea how to generate images,
which can better serve image retrieval. We provide a direct
comparison between the distribution of the embeddings from
the two-stage training and the proposed joint training in Fig. 4.
As illustrated, our joint training has a strong ability to split
the embeddings from different classes, which leads to better
ZS-SBIR performance.

D. Comparison With SOTA

We compare the proposed method against existing state-
of-the-art ZS-SBIR methods on both Sketchy Extended [8]
and TU-Berlin Extended [15] datasets. The quantitative results
of different methods are reported in Table IV. The back-
bone of the proposed method is ResNet-50. Our method
outperforms existing state-of-the-art methods by a large mar-
gin even without any specially designed backbones [65] or
semantic guidance [35]. Our method has achieved 57.7%
m AP@all and 65.8% Prec@100 on the TU-Berlin Extended
dataset. The highest results of the other methods are only
49.5% m AP@all and 61.6% Prec@100, and our method
has achieved 8.2% improvement on m AP@all and 4.2%
improvement on Prec@100. Besides, our results of using the

hashing codes even exceed the previous highest performance.
For the Sketchy Extended [8] datasets, the Prec@200 reaches
60.8%, which is comparable to the previous best results.

The proposed ACNet has achieved a larger performance
gain on TU-Berlin Extended dataset than Sketchy Extended
dataset. We attribute this to the fact that the sketches from the
TU-Berlin Extended dataset have more abstract sketch repre-
sentations and fewer sketch details. Thus, the proposed ACNet
can achieve a large performance gain by making the sketch
domain approach to the photo domain. We provide more
experimental results of using various embedding dimensions
and backbone networks (VGG-16 [71] and ResNet-50 [56]) in
Section IV-E.

The qualitative results are shown in Fig. 5. We selected
three instances from the two datasets to provide an intuitive
comparison. The proposed ACNet could effectively return
the correct photos given a query sketch. We provide two
similar instances from the same category “cow” and the
two instances have the same orientation and similar shape
representation except for the fine-grained representations on
the head part. The proposed method could distinguish these
fine-grained representations and provide corresponding desired
photos rather than the same photos with prominent feature
representations, which demonstrates that the proposed ACNet
has extracted effective representations on the unseen cate-
gories. Under a more challenging case: the “couch” sketch
on the third row of the TU-Berlin Extended dataset, the fifth
retrieved photo belongs to the “purse” even though the two
categories are conceptually different. This failure is caused by
that the retrieved wrong photo sharing very similar structural
representations with the real couch photos.

We also provide some failure results on the Sketchy
Extended and TU-Berlin Extended datasets in Fig. 6.
We selected three instances from the two datasets to provide
an intuitive illustration. Take the case of “seagull” as an
example, the top-2 wrongly retrieved photos are belonging to
“songbird”, which is a very similar category to “seagull”. The
distinction between these two categories is typically classified
as a fine-grained problem. We do not effectively capture the
differences in local details because our method concentrates
on the extraction of global features. Even so, we can still
easily see that there are many similarities between the query
sketch and the retrieved photos, including shape, posture, etc,
which also shows that our method can extract meaningful
features to some extent. It is not difficult to see that there is
some degree of similarity and correlation between the retrieved
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TABLE IV
OVERALL ZS-SBIR COMPARISON OF OUR METHOD AND OTHER APPROACHES ON SKETCHY EXTENDED [8] AND TU-BERLIN EXTENDED [15]

DATASETS. “†”DENOTES RESULTS OBTAINED BY HASHING CODES, AND “-” MEANS THAT CORRESPONDING RESULTS ARE NOT REPORTED
IN THE ORIGINAL PAPERS. THE BEST AND SECOND-BEST RESULTS ARE BOLD AND UNDERLINED, RESPECTIVELY

Fig. 5. Top-5 ZS-SBIR retrieval results (successful cases) from the proposed model (ResNet-50 backbone with 512 embedding dimension) on Sketchy
Extended [8] and TU-Berlin Extended [15] datasets. Correct results are shown with a green border, while incorrect results are shown with a red border.

Fig. 6. Top-5 ZS-SBIR retrieval results (failure cases) from the proposed model (ResNet-50 backbone with 512 embedding dimension) on Sketchy Extended [8]
and TU-Berlin Extended [15] datasets. Correct results are shown with a green border, while incorrect results are shown with a red border.

photos and the given sketches from the other failure cases too,
which further demonstrates the effectiveness of our method in
extracting features.

To verify the generality of our method, we also report the
experimental results of the Generalized ZS-SBIR [35] (GZS-
SBIR) task in Table VI, in which both seen and unseen

categories are included in the gallery. It can be seen from the
table that although our method does not aim at addressing the
GZS-SBIR task, it still achieves comparable performance, and
even obtains the best results on TU-Berlin Extended dataset.
Different from StyleGuide [68], the proposed method does not
require the class prior as the constraint for sketch-to-image
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TABLE V
ABLATION STUDIES FOR THE PROPOSED METHOD ON SKETCHY EXTENDED [8] AND TU-BERLIN EXTENDED [15] DATASETS. WE ADOPT RESNET-50

AS OUR BACKBONE AND THE EMBEDDING DIMENSION IS 512. THE MODEL WITHOUT SYNTHESIS MODULE IS USED AS THE BASELINE (EXP 1).
THE BEST RESULTS ARE BOLD

TABLE VI
OVERALL GZS-SBIR COMPARISON OF OUR METHOD AND OTHER

APPROACHES ON SKETCHY EXTENDED [8] AND TU-BERLIN
EXTENDED [15] DATASETS. “†”DENOTES RESULTS OBTAINED

BY HASHING CODES, AND “-” MEANS THAT CORRESPONDING
RESULTS ARE NOT REPORTED IN THE ORIGINAL PAPERS.

THE BEST AND SECOND-BEST RESULTS ARE BOLD
AND UNDERLINED, RESPECTIVELY

synthesis. Moreover, the proposed method designs the joint
training for better utilizing the sketch-to-image synthesis to
reduce the domain gap. We do not focus on generating high
quality images and instead promote the ZS-SBIR performance.
It is worth noting that our method does not use any semantic
information as previous works. This also illustrates the advan-
tage of our method.

E. Ablation Study

1) Effectiveness of Ladv and Ls∗
i

norm: Considering the fact
that Ladv and Ls∗

i
norm are inseparable, we explore the effective-

ness of their integration. The joint training with Ls∗
i

norm could
enable the gradients of the retrieval module to back-propagate
to the synthesis module, which makes the synthesis better
serve the retrieval module. Also, the adversarial loss Ladv

could help generate photo-like images with high diversity and
better align the sketch domain and the photo domain. We have
achieved significant retrieval performance improvement as
shown in Table V by comparing Exp 1&2 (from 46.5% to
54.3% in terms of m AP@all on the Tu-Berlin Extended
dataset) under the joint training manner with the GAN-based
synthesis module.

2) Effectiveness of Lide: The generator G is designed
mainly for mapping the sketch domain distribution to the photo
domain. However, with only the adversarial loss constraint
and the large domain shift between sketch images and photo
images, G may generate some meaningless photo images
randomly without the content constraint. The identity loss L ide
is inspired by CycleGAN, which designs the identity loss to
better preserve the domain-agnostic feature representations.
Please note that we only have the forward sketch-to-photo
synthesis and the reconstruction of the photo images com-
pared with CycleGAN. With the constraint of the pixel-level

Fig. 7. The generated image of our sketch-to-photo generator does not look
realistic, but it is made most beneficial to retrieve the corresponding photo
images.

supervision from reconstructing the photo images, we observe
marginal improvements by comparing Exp 2&3 (also Exp
4&5). The m AP@all score increases from 54.3% to 54.9%
(from 56.6% to 57.7%) and the Prec@100 score increases by
1% on TU-Berlin Extended dataset as shown in Table V.

3) Effectiveness of Lsi
norm: We removed Lsi

norm to explore
its influence. Without Lsi

norm , there is a slight retrieval perfor-
mance drop by comparing Exp 3&5 (from 57.7% to 54.9%
in terms of m AP@all on TU-Berlin Extended dataset) as
reported in Table V. The same phenomenon can be observed
by comparing Exp 2&4. Since our goal is to better retrieve
the photo images from the same category as the given sketch
query, we set the optimization objective of the task to minimize
the loss of retrieval (Lp j

norm and Ls∗
i

norm). However, due to the
unstable training of the generator itself and the poor quality of
the images generated in the early stage, the supervision signal
provided by Ls∗

i
norm is not reliable. It makes the final model

move towards the sub-optimal solution. By adding Lsi
norm ,

it can ensure that more stable supervisions could be provide
during the optimization process, and reduce the impact of poor
quality images on the retrieval performance.

4) Selection of λ and γ : In our final objective function
(Equ. 8), there are two hyper-parameters for balancing the
contributions of loss functions. To explore the sensitiveness
of the proposed ACNet to the two hyper-parameters, we have
designed three experiments using different combinations of
λ and γ : (λ = 0.1, γ = 10), (λ = 1.0, γ = 1.0) and
(λ = 10, γ = 0.1). The quantitative comparison is reported
in Table VII. As observed, the proposed ACNet achieves the
highest scores when λ = 10 and γ = 0.1.

5) Comparison With Other Loss Functions: In this paper,
we have chosen the NormSoftmax loss to perform the chal-
lenging ZS-SBIR task considering its simplicity and powerful
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TABLE VII
OVERALL COMPARISON OF OUR METHOD WITH DIFFERENT

HYPER-PARAMETERS ON SKETCHY EXTENDED [8] AND TU-BERLIN
EXTENDED [15] DATASETS. THE BEST RESULTS ARE BOLD

TABLE VIII
THE ZS-SBIR PERFORMANCE COMPARISON UNDER DIFFERENT LOSS

FUNCTIONS ON SKETCHY EXTENDED [8] DATASET. THE BEST
RESULTS ARE BOLD

Fig. 8. Top-5 retrieval results from the proposed model (ResNet-50 backbone
with 512 embedding dimension) on Sketchy Extended [8] dataset by given a
query sketch that is not from the search set and a noise image. The generated
images of our sketch-to-photo generator to the corresponding query images
are shown in the last column.

ability. We conducted more experiments of selecting three dif-
ferent loss functions: one normal Cross-Entropy loss, one more
pair-based loss (Margin loss [72]) and one more proxy-based
loss (ProxyAnchor [73] loss). We report the experimental
results in Table VIII. The experimental results show that the
retrieval performance by using ProxyAnchor loss is much
closer to NormSoftmax than Cross-Entropy loss and Margin
loss, though they are inferior compared with NormSoftmax
loss.

6) Effectiveness of G: Here we discuss the effectiveness
of G. In this paper, we adopted the generator architecture
of CycleGAN for generating photo-like images from the
sketches. The CycleGAN adopts the symmetric structure for
each domain, but our method only adopts a one-way gener-
ator (sketch-to-photo generator), because our goal is to use
G as a feature intensifier to generate intermediate features.
The essence of the designed generator is to generate more
photo-like information for sketches so that the generated
outputs can serve the subsequent retrieval, rather than making
the generated image itself visually realistic. In fact, it does
look a bit odd (not human-friendly, but algorithm-friendly) as
shown in Fig. 7. This figure shows both the generated images
of the well-drawn (the cases of “apple”) and ill-drawn (the
cases of “elephant”) sketches. The goal is NOT to optimize
both synthesis and retrieval. The synthesis module is optimized
by the supervision from the retrieval module, which does not
lead to visually realistic images.

For better understanding the behavior of our synthesis
module and the whole system, we explore the scenarios when

TABLE IX
THE ZS-SBIR PERFORMANCE COMPARISON UNDER DIFFERENT GANS

ON SKETCHY EXTENDED [8] DATASET. THE BEST RESULTS ARE BOLD

TABLE X
THE ZS-SBIR PERFORMANCE COMPARISON UNDER DIFFERENT IMAGE

AUGMENTATION TECHNIQUES ON SKETCHY EXTENDED [8] DATASET.
THE BEST RESULTS ARE BOLD

a sketch that is not from the search set and a noise image are
provided as the input. The retrieval results and the generated
images are shown in Fig. 8. For the given “blueberry” sketch
(taken from the Quick, Draw! dataset [74]), which is not
part of the Sketchy Extended [8] dataset, we can find the
retrieved photos are all belonging to the category of “pear”,
which share the similar shape as the query sketch. This also
reflects that our method can give intuitive and comprehensible
retrieval results even when the given query images are not
belonging to the datasets. And for the noise image, as the
query image itself does not show any obvious features, there
is no correlation between the retrieved photos. The retrieved
photos are belonging to “mouse”, “raccoon”, “cow”, “mouse”
and “saw”, respectively.

G is designed to be very lightweight in this paper. Designing
it this way can better demonstrate that the proposed method
does not depend on a sophisticated and heavy synthesis
network. We are not trading the model complexity for bet-
ter accuracy. We conducted more experiments on GANs by
replacing CycleGAN with StarGAN v2 [75], a recent and more
sophisticated network. The experimental results in Table IX
show that using a new and complicated GAN does not really
improve. From the results, we can find that the performance
obtained by replacing CycleGAN with StarGAN v2 is similar,
which also verifies that our method can be applied to different
synthesis networks and also not so sensitive to the synthesis
network architecture. Finally, we also argue that our goal
is to promote retrieval performance rather than improve the
naturalness and aesthetic quality of the synthesized samples.

7) Comparison With Data Augmentation: To further verify
the effectiveness of our synthesis module, we conduct experi-
ments on the Sketchy Extended dataset using different image
augmentation techniques (e.g., solarization and color jittering)
rather than the synthesis augmentation. The results are reported
in Table X. Applying color jittering could improve perfor-
mance slightly, but it is much less effective than using the
proposed sketch-to-photo synthesis. Solarization augmentation
can even result in worse performance. The experimental results
further confirm the effectiveness of our synthesis module.
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Fig. 9. Overall comparison of our method with different number of channels on Sketchy Extended [8] and TU-Berlin Extended [15] datasets.

Fig. 10. Overall comparison of our method with different number of blocks on Sketchy Extended [8] and TU-Berlin Extended [15] datasets.

TABLE XI
OVERALL COMPARISON OF OUR METHOD WITH DIFFERENT BACKBONE

NETWORKS AND EMBEDDING SIZES ON SKETCHY EXTENDED [8] AND
TU-BERLIN EXTENDED [15] DATASETS. THE BEST RESULTS FOR

EACH BACKBONE ARE BOLD

8) Different Architectures of G: We also explore the influ-
ences of choosing different architectures for G and D on
the final ZS-SBIR results. We conduct the corresponding
experiments in two ways. We first set the number of channels
c to different values for both G and D. The quantitative results
are reported in Fig. 9. We observe that we can achieve better
results when using a lightweight architecture. We guess that
it is more possible for the model with a bigger network to
introduce noise and uncertainty to the downstream retrieval
module. Later, we design different architectures for G by
choosing different number of residual blocks and the results
are reported in Fig. 10. An appropriate number (e.g., 6 or 8)
of residual blocks could achieve the best ZS-SBIR results.

9) Various Backbones and Embedding Sizes: In this section,
we aim to explore the effectiveness and sensitivity of choosing
various backbone networks: ResNet-50 [56] and VGG-16 [71].
We conduct the ZS-SBIR experiments on both the Sketchy
Extended [8] and TU-Berlin Extended [15] datasets. All the
quantitative results under various settings are reported in
Table XI. With the same embedding size, we can obtain better
results based on ResNet-50 network than VGG-16 network.
The proposed ACNet could achieve a very impressive 58.6%
m AP@all score on TU-Berlin Extended dataset by choosing
the ResNet-50 with a 4096 embedding size as the backbone
network.

V. DISCUSSION

A. Limitations

When given a sketch query that is highly succinct and
abstract in Fig. 12, it is extremely challenging to judge whether

it is “window” or “door” due to the class ambiguity. Since the
sketch-to-photo synthesis module of our method may still fail
to generate desired reasonable images with high confidence,
our method cannot handle this case well, either. We think
that this ambiguous case could be resolved by introducing
semantic information, e.g., adding embedding information
such as CLIP [78] and BERT [79] to guide image generation,
which can be our future work.

B. Comparison With Unsupervised Domain Adaptation

1) Overview Comparison: We provide the setting compari-
son between the two Unsupervised Domain Adaptation (UDA)
methods (UMDA [76] and CAPQ [77]) and our proposed
method in Fig. 11. UMDA and CAPQ conduct the experiments
under similar setting, in which the distribution shift comes
from the difference between source dataset and target dataset.
In detail, the experimental setting of UMDA and CAPQ
is a less restrictive zero-shot setting, in which the training
model has access to part of unlabelled data on the target
domain. Different from UMDA and CAPQ, the proposed
method mainly concerns about the ZS-SBIR task as described
in Fig. 11, where the target data are not available during
the whole training procedure. The knowledge gap (also a
significant distribution shift) between the training and testing
demands that the model should has a strong generalization
ability to unseen testing data. Thus, the ZS-SBIR task is
very different from the domain adaptation tasks mentioned in
UMDA and CAPQ. And we cannot perform a fair comparison
between these methods under the same experimental setting.
These UDA methods cannot be directly introduced into the
ZS-SBIR task.

2) Discussion About Information Difference Between
Domains: Compared with UMDA, the information difference
between the shop images and consumer images mainly rely on
the background changes and thus is less than the information
difference between sketch images and photo images in our
ZS-SBIR task. As for CAPQ, the text description is a more
abstract and semantic representation compared with the visual
perception. The information difference presented in CAPQ is
larger than the information difference in ZS-SBIR. However,
we argue that the inter-class variation of ZS-SBIR is less
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Fig. 11. The experimental setting comparison between UMDA [76], CAPQ [77] and our method.

Fig. 12. Ambiguous case: the given sketch has the similar structure as
“window” and “door.”

than the difference among the activity events in the text-video
retrieval. This requires that the trained model for ZS-SBIR
should focus on the more fine-grained feature representations
between classes. Furthermore, the zero-shot setting will also
introduce further challenge for effective ZS-SBIR. How to
transfer these methods to ZS-SBIR task can be an useful
direction for future research.

VI. CONCLUSION

In this work, we proposed a novel, simple and effec-
tive joint synthesis-and-retrieval network called Approaching-
and-Centralizing Network (ACNet) for Zero-Shot Sketch-
Based Image Retrieval (ZS-SBIR) and achieved state-of-the-
art performance on Sketchy Extended [8] and TU-Berlin
Extended [15] datasets. The proposed ACNet could effectively
reduce both the domain gap and the knowledge gap by con-
stantly generating samples with high diversity and centralizing
the embeddings of both sketches and photos belonging to the
same category. Our joint training framework provides valuable
insight into how to integrate synthesis and other vision tasks.
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