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Abstract— Steganography is an important and prevailing
information hiding tool to perform secret message transmission
in an open environment. Existing steganography methods can
mainly fall into two categories: predefined rule-based and data-
driven methods. The former is susceptible to the statistical attack,
while the latter adopts the deep convolution neural networks to
promote security. However, deep learning-based methods suffer
from perceptible artificial artifacts or deep steganalysis. In this
article, we introduce a novel composition-aware image steganog-
raphy (CAIS) to guarantee both visual security and resistance
to deep steganalysis through the self-generated supervision. The
key innovation is an adversarial composition estimation module,
which has integrated the rule-based composition method and
generative adversarial network to help synthesize steganographic
images with more naturalness. We first perform a rule-based
image blending method to obtain infinite synthetically data–label
pairs. Then, we utilize an adversarial composition estimation
branch to recognize the message feature pattern from the
composite image based on these self-generated data–label pairs.
Through the adversarial training, we force the steganography
function to synthesize steganographic images, which can fool
the composition estimation network. Thus, the proposed CAIS
can achieve better information hiding and higher security to
resist deep steganalysis. Furthermore, an effective global-and-
part checking is designed to alleviate visual artifacts caused by
hiding secret information. We conduct a comprehensive analysis
of CAIS from various aspects (e.g., security and robustness)
to verify the superior performance of the proposed method.
Comprehensive experimental results on three large-scale widely
used datasets have demonstrated the superior performance of
our CAIS compared with several state-of-the-art approaches.

Index Terms— Generative adversarial network (GAN), image
steganography, self-generated supervision.
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I. INTRODUCTION

IN THE past decades, considerable attention has been
paid to information security since the fast development

of the online community and cloud computing has led to
information leakage problems [1], [2]. To perform a secure
transmission of private information in an open community,
information hiding [3] and cryptography [4] algorithms have
been proposed. Cryptography targets encrypting the private
message to meaningless or irrelevant output to prevent private
information leakage. Sometimes, the yielded encrypted outputs
usually result in the attention of the attackers. The security of
cryptography mainly relies on high computation and time costs
to decode private secret information. Different from cryptog-
raphy algorithms, information hiding methods aim to hide the
secret information to a cover, and the composite outputs are
required not to be recognized as much as possible [3], [5].
In this way, the approach named steganography [3], [6], [7]
performs private message transmission in the open community
while not being noticed.

Steganography is regarded as the art and science of invisible
communication, which is accomplished by hiding messages
into a cover to secure the existence of messages. Previous
steganography algorithms mainly focus on hiding text infor-
mation and binary data to one cover image [8]–[12], which
has a strong capacity to hide the secret. The steganography
techniques can mainly be divided into two kinds: those in the
image domain and those in the transform domain. The most
common, simple approach to hide the message in the image
domain, is the least significant bit (LSB) [13], [14] insertion
by placing the secret message to the LSBs. Hussain et al. [15]
conducted steganography in the spatial domain and incor-
porated image processing methods to determine which part
of a cover to place the private information. For the latter,
researchers [16], [17] proposed to hide the message in the
discrete cosine transform domain. Despite those impressive
decoding results achieved by these methods, they were rel-
atively vulnerable to statistical attack and brute-force attack
once their steganographic methods had been known by the
attacker.

Image steganography that aims to hide one secret image
to another irrelevant cover image is much more challenging
due to the relatively high capacity compared with hiding the
text messages. A simple illustration of image steganography
is shown in Fig. 1. Alice wants to send her portrait to Bob by
uploading it to an open environment. She places her portrait
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Fig. 1. Alice intends to send her portrait to Bob by transmitting it in an
open community, while she does not want anyone other than Bob access to her
photograph. Alice randomly selects a cover image and hides her portrait image
into the cover to generate a steganographic image, which is visually identical
to the cover image. Even though this steganographic image is intercepted by
an attacker like Eve, no personal information of Alice will be recognized.

image (“message image”) to the same size beautiful flower
image (“cover image”) and yields a steganographic output that
can be decoded by Bob. One thing worth mentioning is that
the steganographic image not only hides the information by
changing the original cover but also covers up the fact that
there is a secret message in the steganographic image due
to its friendly visual effect compared with image encryption
methods. Recently, convolutional neural networks (CNNs)
have revolutionized the computer vision community because
of their extraordinary performance on various tasks [18]–[20].
A lot of attempts [9], [21]–[24] adopted two reverse networks
to hide and reveal the message image. Baluja [21], [25] and
Rahim et al. [23] introduced the autoencoder architecture to
achieve message image hiding and revealing through an end-
to-end manner, which has shown remarkable steganography
performance. Considering the homogeneous property between
image synthesis and image steganography, the generative
adversarial network (GAN) [26] is also applied in [6], [7],
[9], [22], [24], and [27]–[31] to achieve information hiding
through conditional image generation.

As above discussed, unlike text messages, message images
contain a larger amount of information. It is essential to
find an appropriate way to place the message image on the
plain cover image. Inspired by image processing methods such
as watermarking [32]–[35] and image blending [36], which
provide a feasible manner to combine two images, we propose
to incorporate the image fusion techniques [32]–[34], [36]
into the deep generative adversarial model [26]. The proposed
adversarial composition estimation module can promote the
ability to generate a more natural steganographic image with
higher robustness and security. In detail, we first yield infinite
composite images (self-generated data) through the rule-based
image blending method by introducing a random variable α
(self-generated label) from a uniform distribution to control the
message composition in the composite images. By formulating
the self-generated data–label pairs shown in Fig. 2, we design
one auxiliary estimation task to recognize the message compo-
sition from the composite images to conduct self-supervision.
On the one hand, by approximately exploring all the possible
combinations to fuse the cover and message images through
saturation sampling, the auxiliary estimation branch can learn
how to distinguish the feature patterns from the message
image under self-generated supervision. On the other hand,

by minimizing the estimated value of the synthesized stegano-
graphic image generated by the steganography function, the
adversarial training can drive the generative model to syn-
thesize steganographic images without recognizable message
feature patterns.

The overall flowchart of the proposed composition-aware
image steganography (CAIS) is shown in Fig. 2. Two
reverse functions are responsible to perform steganography
and reconstruction, separately. We adopt alpha blending for
the adversarial composition estimation module for generating
composite images. An effective global-and-part checking is
also combined to alleviate artificial artifacts caused by hiding
the message image. To enhance the reconstruction perfor-
mance, both pixelwise and perceptual losses are included.
To prove the effectiveness of our CAIS, we have constructed
extensive experiments on different large-scale image datasets.
A comprehensive analysis of the security, robustness, and
capacity of the proposed method is provided. Besides, we have
simulated the noise, compression (JPEG compression), and
image distortions (cropping, flipping, and blurring) attacks to
demonstrate the robustness of CAIS. To sum up, the major
contributions of this work are given as follows.

1) We propose a novel CAIS method based on adversarial
training, which integrates the rule-based image fusion
method and the deep generative model through an aux-
iliary self-generated task. The self-generated supervision
can result in a stronger ability of the discriminator
to recognize the message pattern from the synthe-
sized steganographic image. Through adversarial train-
ing, the steganography function could generate more
natural steganographic images with high robustness and
security.

2) An effective global-and-part checking is developed to
alleviate the artificial artifacts caused by hiding secret
message images. Both the pixelwise and perceptual
losses are constructed to boost the steganography and
reconstruction performance.

3) Comprehensive analysis regarding the issues of security
and robustness has been conducted. The experimental
results have demonstrated the superior security and
robustness of our method.

The rest part is organized as follows. Section II briefly
introduces the related work and Section III elaborates the
proposed approach. Section IV presents the extensive experi-
mental results on various datasets, followed by the conclusion
in Section V. The codes and pretrained models of our CAIS
are available at https://github.com/zhengziqiang/CAIS.

II. RELATED WORK

A. Information Hiding

Traditional information hiding methods can mainly fall into
two categories: watermarking [34] and steganography [5],
[37]. Watermarking aims to create the translucent message
image on the cover image to provide authenticity. Water-
marking can perform robust fingerprint generation through
both imperceptible and visible ways. Steganography aims
to conceal private messages to make secret information
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Fig. 2. Four components of the full system. Top-left corner: hiding message image xm in cover image xc through steganography function F and synthesizing
steganographic output x̃c . Bottom-left corner: generating composite image xw by Alpha blending and using self-generated data–label: (xw, α) to optimize
the estimation of Dg . Bottom-right corner: randomly cropping part regions and performing part checking through part discriminator Dp . Top-right corner:
uncovering the steganographic image with the revealing network G to a reconstructed image x̂m .

unrecognizable. The ultimate objectives of steganography are
undetectability (security), robustness, and capacity. Previous
steganography methods attempted to hide the text information
to cover image based on different rules [10], [11], [16],
[17], [38], [39]. By converting the text message to specific
encoding formats, works [13], [14], [16] combined the secret
message and cover in spatial [13], [14] and frequency [16]
domain. At the revealing stage, the decoded message recovered
by the rule-based steganography methods is usually lossless.
However, the rule-based methods suffer from high risks to be
detected and recovered by the attacker through the statistical
attack or brute-force attack. Recently, plenty of work [6],
[7], [21], [25], [28], [29], [40], [41] adopted deep learning
to perform image steganography and got remarkable perfor-
mance. Qian et al. [40] first introduced a customized CNN
to learn the feature representation for image steganography
automatically. The representative work of Baluja [21], [25]
adopted two reverse neural networks to hide the message
image into a plain image. Rahim et al. [23] extended this
idea [21] and adopted autoencoder architecture to perform end-
to-end image steganography. To boost the steganography per-
formance, the multiscale feature fusion strategy is conducted
in [23]. UDH [42] proposed a general framework for image
steganography and watermarking. A comprehensive analysis
of robustness was also conducted in UDH paper [42]. In this
article, we target to integrate the rule-based image composition
method and DCNN to synthesize steganographic images with
more naturalness and security.

B. GAN-Based Image Steganography

Since developed, the GANs [26] had achieved the state-
of-the-art performance on various vision tasks, such as image

synthesis [43], domain translation [18], image encryption [27],
and image steganography [37], [44]. The earliest applica-
tion of GAN-based image steganography was introduced
in [45], which first adopted the deep convolutional genera-
tive adversarial network (DCGAN) [46] to generate image-
like containers. Chu et al. [24] further analyzed the potential
of unpaired image-to-image translation methods to achieve
symmetric image steganography. The cycle-consistency con-
straint [18] was introduced to ensure the reconstruction of
the message image among two reverse functions. Further-
more, Yang et al. [22] explored using an embedding simu-
lator to place a smaller message image to the cover image.
Zhang et al. [47] targeted to boost the steganography perfor-
mance using the U and V channels and concealed a grayscale
message image. Chang [7] proposed to combine GAN to
predict bit planes that had been applied to carry the mes-
sage information to boost image steganography performance.
Differently, our method is the first one that incorporates the
previous image blending method and the deep generative
model through an adversarial composition estimation module,
which leads to a better steganography performance.

C. Self-Generated Supervision

Self-supervised learning is designed to obtain effective
feature representations based on unlabeled data [48]–[50].
The key innovation of self-supervised learning is to design
self-generated supervision and obtain learned feature repre-
sentations through various pretext tasks [49], [51]. The self-
supervision has been widely adopted in various vision tasks,
such as domain adaptation [52], image classification [51],
and semantic segmentation [49], [53], to boost vision perfor-
mance and reduce the labor to collect the data annotations.
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Inspired by this annotation-free training scheme, we introduce
an adversarial composition estimation module to boost the
image steganography performance. The proposed module first
randomly samples the self-generated labels from a uniform
distribution and performs an image blending method to synthe-
size infinite desired composite images. The composite images
and the self-generated labels formulate the self-generated
data–label pairs. Through self-generated supervision, the abil-
ity to distinguish the private message pattern from the stegano-
graphic images can be promoted heavily so that the proposed
method could generate steganographic images with higher
security.

III. PROPOSED METHOD

A. Preliminary

Image steganography is to generate a steganographic image
that slightly alters the appearance of the cover image and
obtains a reconstructed message image that is as similar
as possible to the original message image. To estimate the
composition of the message in the steganographic image
x̃ c, we propose adversarial composition estimation, which
integrates the rule-based image blending method and the
adversarial training. This module conceptually consists of two
operations.

1) The composition estimation task is optimized based on
self-generated data–label pairs.

2) Minimize the estimated message composition from x̃ c

to formulate adversarial training.
Through the supervised manner, we can teach the adversarial
composition estimation module to distinguish the message
composition from the composite images. Besides, adversarial
training can also promote the ability to synthesize stegano-
graphic images with more naturalness. The whole framework
of CAIS is shown in Fig. 2, which contains two stages:
hiding process and reverse revealing process. In the hiding
stage, the cover image and the message image are fused by
the steganography function F to generate the steganographic
output. The adversarial composition estimation module is con-
ducted to boost the steganography performance. To alleviate
the artificial artifacts caused by hiding the message image,
the dual-path discriminators are designed for global-and-part
checking. At the revealing stage, we adopt a reverse recon-
struction function G to obtain the reconstructed message. Both
the pixelwise and feature-level losses are adopted between the
message image and the reconstructed message.

B. Adversarial Composition Estimation

In the hiding process, the steganography function F targets
to hide a private message image xm into a cover image xc to
generate a steganographic image x̃ c, which looks similar to
the cover image. This procedure can be described as follows:

x̃ c = F(C(xc, xm)) (1)

where C indicates the concatenate operation. Similarly, we can
also obtain one composite image xw using the image blending
method [36] and adopt alpha blending as

xw = αxm + (1 − α)xc (2)

where α is a hyperparameter from a uniform distribution
that controls the composition ratio of the message image in
xw. In theory, we can approximately explore all the possible
combinations of xc and xm and obtain infinite self-generated
data–label pairs (xw, α) for Dg (global discriminator) and Dp

(part discriminator) shown in Fig. 2. Dg and Dp share the
same network architecture. For simplicity, we only illustrate
the adversarial composition estimation procedure based on Dg ,
and the same procedure is also conducted for Dp. Dg has
two branches: one primary adversarial branch for steganog-
raphy discrimination and an auxiliary estimation branch for
supervised regression. Given the data–label pair: (xw, α), the
estimation branch targets to reproject the composite image xw

to the label space and yield α̃. Then, we compute the distance
between α and α̃

Lest(Dg) = ‖α̃ − α‖1, with α̃ = Dg(xw) (3)

we compute the one-norm distance between the output and
the corresponding sampled label. Through this self-generated
supervision, we can teach Dg how to distinguish the mes-
sage patterns from the generated composite images. Besides,
to force the generator to be composition-aware, we formu-
late an additional adversarial composition estimation to the
synthesized steganographic image x̃ c

Lest(F, Dg) = ‖Dg(x̃ c) − 0‖1 (4)

by minimizing Lest(F, Dg) to zero, and we constitute
the adversarial training between Dg and F . As α → 0, the
synthesized steganographic image x̃ c can be very close to the
cover image visually, which indicates a better steganography
performance. Through the adversarial training, F learns to
synthesize the steganographic output without discriminative
message patterns to fool Dg . Besides, the adversarial composi-
tion estimation could be regarded as a steganography detection
function with more stronger constraint than the binary classifi-
cation. With the parallel training, F could synthesize stegano-
graphic images with more naturalness and higher security.

C. Global-and-Part Checking

To alleviate the artificial artifacts caused by embedding
the message image, we adopt a global-and-part checking
process, as shown in Fig. 2. Iizuka et al. [54] first proposed
a global–local adversarial training to effectively promote the
global and local consistency for image completion. We intro-
duce the part checking procedure to image steganography
to synthesize steganographic images with more naturalness.
To be noted, different from [54], in which the cropped part is
from the ground truth mask for completion, our part discrimi-
nator is fed with a random part cropped from the correspond-
ing images. The global discriminator Dg is responsible for the
global consistency, while the part checking implemented by
the part discriminator Dp can enhance local harmony. For the
global checking, the adversarial loss Ladv(F, Dg) is computed
as follows:
Ladv(F, Dg) = Exc∼Pdata(xc)

[
log Dg(xc)

]

+ Ex̃ c∼Pdata(x̃c)

[
log(1 − Dg(x̃ c))

]
(5)
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and through the adversarial training, we can reduce the
distance between the “real” image distribution Pdata(xc) and
the “fake” steganographic sample distribution Pdata(x̃ c).The
adversarial composition estimation loss Lest(F, Dg) is defined
as (4).

As for the part checking, we randomly crop regions: x̃ p
c , x p

c ,
and x p

w from the steganographic image x̃ c, the cover image xc,
and the composite image xw, respectively. This adversarial loss
Ladv(F, Dp) for part checking can be described as follows:
Ladv(F, Dp) = Ex p

c ∼Pdata(x p
c )

[
log Dp(x p

c )
]

+ Ex̃ p
c ∼Pdata(x̃ p

c )

[
log(1 − Dg(x̃ p

c ))
]

(6)

and the adversarial composition estimation loss Lest(F, Dp)
for part checking is computed as follows:

Lest(F, Dp) = ‖Dp(x̃ p
c ) − 0‖1 (7)

and we also compute

Lest(Dp) = ‖Dp(x p
w) − α‖1 (8)

to optimize Dp . In this article, the cropped region is half
the size of the original image. Further investigation about the
part size can be found in Section IV-G1. The additional part
checking procedure could boost local content consistency and
reduce artificial artifacts.

D. Loss Functions

We also conduct a pixelwise loss between the stegano-
graphic image x̃ c and the cover image xc, which is widely
adopted for different image steganography methods [6], [7],
[31]. For the revealing stage, the reconstruction function G is
to synthesize x̂m , which is the reconstruction of the message
image. To boost the reconstruction performance and recover
the detailed information of the message image, we perform
both pixelwise and perceptual losses between the recovered
message and the original message. These two loss functions
are described as follows. Pixelwise loss is one necessary
constraint for both the hiding and revealing processes. For
the hiding process, we compute the pixelwise information
residuals between xc and x̃ c to improve the undetectability
of the steganographic images. For the revealing procedure,
we compute the pixelwise distance between x̂m and xm to
guarantee that the secret information could be recovered. The
pixelwise loss Lpix is described as follows:

Lpix = ‖x̃ c − xc‖1 + β‖x̂m − xm‖1 (9)

where β is the hyperparameter to control the two components.
The first term contributes to the steganography performance,
while the second term is to guarantee the reconstruction of
the message information. Perceptual loss is also applied to
promote the reconstruction performance of the message image.
The perceptual loss [55] can provide G multiple hierarchical
constraints. Different from the pixelwise loss which compares
two images pixel by pixel and each pixel contributes to
the loss equally, the perceptual loss measures the similarity
between the reconstructed message and the original message
at the feature level. Concretely, we follow Chen and Koltun’s

work [55] and incorporate an extra pretrained VGG-19 net-
work on ImageNet. The trained network could effectively
extract some semantic representations and introduce some
prior knowledge for the message reconstruction. This loss
constitutes the distance at multiple scales of feature represen-
tations, which represents both low- and high-level information
of images

Lper(G) =
N∑

n

λnEx [||�n(xm) − �n(G(F(xm)))||1] (10)

where �n is the nth feature extraction layer of the pretrained
VGG-19 network. We compute the perceptual loss at the
defined N = 5 selective layers. The hyperparameter λn

controls the influence of different scales. We regard different
scales as equally important and set all λn to 1. Note that
the parameters of the pretrained model are frozen during the
training process.

1) Final Objective Function: The total loss of our method
is a weighted sum of all the losses mentioned above

L(F, G) = Ladv + Lest + λLpix + γLper

Ladv = Ladv(F, Dg) + Ladv(F, Dp)

Lest = Lest(F, Dg) + Lest(F, Dp) (11)

where λ and γ are the hyperparameters to balance the different
loss terms.

IV. EXPERIMENT

A. Experimental Setup

1) Datasets: Following the previous work [21], [47],
we adopt three widely used datasets in our experiment to
evaluate both steganography and reconstruction performance.
The brief introduction of these datasets is depicted as follows.

1) 102Flowers [56] is a large-scale flower image dataset
captured in diverse environments. This dataset contains
102 different categories of flowers and each category
consists of around 40–258 images. The images of
this dataset have a large diversity of scale, pose, and
illumination.

2) Caricature1 contains thousands of cartoon images of six
public figures. This dataset consists of 4942 images
training set, 2060 images cross validation set, and
856 images test set. We inherit the train/test split of this
dataset in all our experiments.

3) ImageNet [57] is a large-scale image database, which
has 1000 different categories. Each category has an
average of over 500 images and all images are captured
at different scenes and have a large diversity.

2) Compared Methods: We mainly perform four mostly
related image steganography methods.

1) Steganography [21] is the first work that applies the deep
learning model to perform image steganography task.

2) Deep-stegano [23] extended the Baluja et al.’s work [21]
to perform the end-to-end image steganography based on
autoencoder architectures.

1https://www.kaggle.com/ranjeetapegu/caricature-image
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3) ISGAN [47] combined the adversarial training and split
the U and V channels to hide the grayscale message
image. To make a fair comparison, we modified the
official codes to achieve the RGB image steganography.

4) UDH [42] proposed a novel general cover-agnostic
framework to embed the message image, which is robust
to light field messaging (LFM) and other distortions.

3) Evaluation Metrics: To quantitatively evaluate the effec-
tiveness of image steganography methods, we compare all the
methods from two aspects: steganography performance and
reconstruction performance.

Steganography performance is an essential evaluation for
image steganography algorithms, which guarantees the secu-
rity of transporting private messages. We mainly evaluate
image steganography performance by three aspects: image
quality, TMQI, and human-marked accuracy considering both
the automatic and human evaluations.

1) Image Quality: It is measured through three aspects.
First, mean square error (MSE) and root mean square
error (RMSE) are employed to measure the information
residuals since we need to compute the pixelwise dis-
tance between the steganographic image and the cover
image. The lower the information residuals, the harder
it is to detect and recover the original message informa-
tion. Second, we compute the peak signal-to-noise ratio
(PSNR) to measure the quality of reconstruction of lossy
compression. The structural similarity index (SSIM) is
also computed to evaluate the structural similarity. The
higher SSIM and PSNR scores, the better performance.

2) TMQI: We adopt an objective quality named TMQI
as our assessment metric to evaluate the naturalness
of the steganographic images. TMQI is an algorithm
for tone-mapped images that combines a multiscale
signal fidelity measure based on a modified SSIM and
a naturalness measure based on intensity statistics of
natural images [58]. Three evaluation items in TMQI
marked as TMQI-S, TMQI-N, and TMQI-Q represent
for fidelity score, naturalness score, and final score,
respectively. All of these scores range from 0 to 1.
The larger the score be, the higher quality an image
possesses.

3) Human-Marked Accuracy: Considering that the stegano-
graphic images could be intercepted, it requires the
synthesized images to fool humans. To simulate this
attack, we randomly generate 2000 steganographic
images for every method. Twenty volunteers were asked
to recognize the artificial image from the original
cover image and steganographic image. The accuracy
is counted statistically for various methods. The accu-
racy close to 50% indicates the high naturalness of
synthesized steganographic images, which cannot be
recognized by humans.

Second, reconstruction performance is significant to evalu-
ate the stability to decode the private message image from the
steganographic image. Following the same setting to evaluate
the steganography performance, we adopt four metrics: MSE,
RMSE, PSNR, and SSIM defined in image quality as the main
evaluation criteria.

TABLE I

NETWORK ARCHITECTURE OF F AND G . KS, S, AND OC INDICATE
KERNEL SIZE, STRIDE SIZE, AND OUTPUT CHANNEL

NUMBER, RESPECTIVELY

4) Implementation Details: The detailed network archi-
tecture of F and G is shown in Table I. We first adopt
the reflection padding for the concatenation of xc and xm .
Then, three Conv-InstanceNorm-ReLU (CIR) blocks with
kernel size 4 and stride size 2 to achieve downsampling are
conducted. To enlarge the information capacity, F combines
nine residual blocks (RBs) to stuck residual information.
For the RBs, the kernel size is 3 and the stride size is 1.
As for the reverse upsampling stage, another three Deconv-
InstanceNorm-ReLU (DIR) blocks are adopted. Finally, a Tanh
activation is adopted to obtain the normalized steganographic
output. G has a symmetric-like architecture with F . Dg and
Dp have the same network architecture shown in Table II.
The shared backbone of the discrimination branch and the
estimation branch contains one Conv-LeakyReLU layer and
three Conv-InstanceNorm-LeakyReLU (CILR) layers. The
slope for the Leaky RelU is 0.2. Then, for the discrimination
branch, we obtain the logit output to perform the real/fake
discrimination after one Conv layer. For the estimation branch,
we apply another three downsampling layers to obtain the
estimation output. We optimize Dg with the sum of Lest(Dg)
and Ladv(Dg), while we optimize Dp with the sum of Lest(Dp)
and Ladv(Dp). We choose the Adam optimizer [59] in our
all experiments and set the initial learning rate to 0.0002.
To balance the steganography and reconstruction performance,
we set β to 1. For (11), we set λ = 10 and γ = 0.1 in
our experiments. More detailed experimental results about the
hyperparameter selection are provided in Section IV-G4.

B. Overall Comparison

In this section, we perform different image steganography
methods on various image datasets. We first evaluate the
effectiveness of the proposed method on the 102Flowers
dataset [56]; 7000 images from the 102Flowers dataset are
randomly sampled for training and the left 1189 images for
evaluation. There are 7000 × 7000 different combinations
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Fig. 3. Visual image steganography comparison of different methods: (a) both the cover and message images are flower images and (b) cover image is
a flower image, while the message image is a caricature image. The images at the left side of black dotted show the steganography comparison, while the
images at the right of black dotted show the reconstruction comparison.

Fig. 4. Visual large-scale image steganography results of different methods. The images at the left of black dotted show the steganography comparison,
while the images at the right of black dotted show the reconstruction comparison.

TABLE II

NETWORK ARCHITECTURE OF Dg AND Dp . THE GREEN PART INDICATES

THE SHARED PARAMETERS OF THE ADVERSARIAL BRANCH AND THE
ESTIMATION BRANCH

to perform at the training stage. We randomly sample 2000
cover–message pairs from the testing images to measure the
steganography performance. To be noted, all the methods
are evaluated by using the same image pairs. The visual
comparison of both steganographic and reconstructed outputs
is shown in Fig. 3. As illustrated, steganography [21] and
Deep-stegano [23] cannot hide the message perfectly (with
obvious artificial artifacts covered by the red and green
boxes). In contrast, our CAIS can synthesize natural-looking
steganographic outputs with negligible textile changes com-
pared with the raw cover image. Besides, we also consider
that the cover images and the message images share different
content representations (e.g., the message images are cari-
cature images, while the cover images are flower images).
Following the same setup, we perform a comparison based

on the images from the Caricature dataset and 102Flowers
dataset [56].

The quantitative comparison under the two settings is
reported in Tables III and IV. The steganographic images
generated by CAIS have a lower distance from the corre-
sponding original cover images, which indicates less risk to
be detected. To further investigate the steganography per-
formance, we have also computed the TMQI scores. The
proposed method outperforms all the other methods at all the
metrics. Besides, the human-marked classification accuracy
is 64.3%, while the counterpart scores of other methods
are over 70%. It is extremely difficult for humans to judge
whether the image carries private visual information. For the
reconstruction performance comparison, our method also gains
a better reconstruction of the message images (the highest
PSNR and SSIM scores).

1) Large-Scale Image Steganography: To prove that CAIS
can be adopted for the real-world image steganography appli-
cation, we conduct the image steganography experiment on
the large-scale ImageNet dataset [57]. The cover and message
images are both from the same dataset. To make a fair
comparison, we follow the official train/test split, and all
methods are trained until convergence with the same number
of iterations. Similarly, 2000 cover–message pairs from the
test images are randomly chosen to perform the comparison.
Both the visual and quantitative comparison are shown in
Fig. 4 and Table V, respectively. The visual and quantitative
comparison has demonstrated that our method could preserve
more image statistics of the cover image even for the complex
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TABLE III

QUANTITATIVE COMPARISON OF BETWEEN DIFFERENT METHODS ON 102FLOWERS DATASET [56]. ↑ (↓) INDICATES
THAT THE LARGER (SMALLER) THE VALUE IS, THE BETTER THE PERFORMANCE

TABLE IV

QUANTITATIVE COMPARISON OF IMAGE STEGANOGRAPHY BETWEEN DIFFERENT METHODS ON THE CARICATURE (MESSAGE IMAGES)
AND 102FLOWERS (COVER IMAGES) DATASETS

TABLE V

QUANTITATIVE COMPARISON OF LARGE-SCALE IMAGE STEGANOGRAPHY BETWEEN DIFFERENT METHODS

TABLE VI

QUANTITATIVE COMPARISON OF BOTH RECONSTRUCTION

PERFORMANCE OF DIFFERENT SETTINGS

message image within complicated content information and
diverse backgrounds. Besides, CAIS can generate natural
steganographic images, which shows great similarity to the
cover images. Both the qualitative and quantitative results have
demonstrated the effectiveness of the proposed CAIS.

C. General Framework

1) Comparison With UDH: The recent UDH [42] is a repre-
sentative general framework to perform image steganography,
which has done a comprehensive analysis under different
settings. In this section, we first make a fair comparison
with UDH under the same setting. Then, we conduct the
corresponding experiments under the same setup of UDH [42]
to prove that our CAIS could be also extended to a general
framework with some small modifications. We adopt the
official pretrained models on the ImageNet dataset2 from
UDH [42] (the models were trained under 128 × 128 image

2The average pixel distance (APD) and LPIPS [60] are computed in
UDH [42] to evaluate the steganography and reconstruction performance.

Fig. 5. Qualitative results of the proposed CAIS under the cover-agnostic
setting, where m′ indicates the transformed message image after H .

resolution). To make a fair comparison, the image resolution
is set to 128 × 128 for our CAIS to perform image steganog-
raphy and message reconstruction. Following the setup of
UDH [42], the overall comparison of both steganography and
revealing (message reconstruction) is reported in Table VI.
As illustrated, the proposed CAIS and UDH are neck-and-
neck.

2) Cover Agnostic: We have performed experiments
under the cover-agnostic setting proposed in UDH [42].
An additional network H is introduced to perform message
transformation. We perform a Tanh activation to obtain the
normalized outputs. The qualitative and quantitative results
on the 102Flowers dataset [56] are reported in Fig. 5 and
Table VII. For a better illustration, we map the normalized
outputs (denoted as m ′ in Fig. 5) to [0, 255] to make m ′
consistent with the natural images. From Table VII, we can
observe that the message reconstruction performance could be
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TABLE VII

QUANTITATIVE RESULTS OF OUR CAIS UNDER DIFFERENT SETTINGS. ALL THE EXPERIMENTS ARE PERFORMED ON THE 102FLOWERS DATASET [56]
FOLLOWING THE SAME EXPERIMENTAL SETTING IN SECTION IV-B

Fig. 6. Qualitative results of the proposed CAIS. We target hide three
different message images into one same cover image. m1, m2, and m3 indicate
different message images and m̂1, m̂2, and m̂3 are the corresponding message
image reconstructions.

Fig. 7. Qualitative results of the proposed CAIS, where the cover image is
random noise, while the message image is the natural flower image.

enhanced under the cover-agnostic setting, while there is slight
image steganography performance degradation.

3) Hiding m Images in n Images: It is first proposed in
UDH [42], which targets to hide multiple message images into
one or several cover images by introducing different neural
networks for decoding the message. Following the same setup,
we perform experiments on hiding three different messages
into one same cover image. The visual results of our CAIS are
shown in Fig. 6. The experimental results have demonstrated
that the proposed CAIS could hide more message information
into one cover image with some performance degradation
reported in Table VII.

4) Noisy Cover: Considering that the cover images and
message images are from different distributions (e.g., the cover
image is random noise and the message image is the natural
image, it is meaningless to set the message image as random
noise), we conduct experiments to hide the flower image into
the meaningless random noise (cover image). The qualitative
and quantitative results are reported in Fig. 7 and Table VII,
respectively. Since the cover image is meaningless, we do

Fig. 8. Qualitative results of the proposed CAIS, where the message image
is the OR code image covering meaningful information. The information can
be decoded accurately from the reconstructed QR code image.

not compute the TMQI scores to evaluate the steganography
performance.

Furthermore, we have also explored choosing the OR code
image as the message image to convey the message infor-
mation. The qualitative image steganography and message
reconstruction results are shown in Fig. 8. We can observe that
the proposed CAIS can reconstruct QR code images accurately
while preserving the meaningful message information after
decoding.

Finally, to provide a fair and comprehensive comparison
with UDH under various settings, we perform experiments on
the ImageNet dataset [57]. We adopt the official codes and
the pretrained models from UDH to conduct the experiments.
Following the experimental setting of UDH, we report the
experimental results of UDH and our CAIS in Table VIII.
As reported, our CAIS and UDH are comparable under the
cover-agnostic and noisy cover settings. Since our model has
a large network capacity than UDH, our method is better than
UDH under the multiple messages setting.

D. Security Analysis

1) Steganalysis: The steganography algorithms should
have a strong ability to evade detection by steganalysis
tools. We adopt a popular open-source steganalysis tool
StegExpose [61] to detect the steganographic images. Follow-
ing the setup in SteganoGAN [9], we randomly use 2000
cover–steganographic image pairs to examine StegExpose.
Considering that StegExpose is specially designed for detect-
ing LSB steganography, StegExpose failed to detect the
steganographic images. Thus, we further perform deep ste-
ganalysis based on recent steganalysis detection approaches.
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TABLE VIII

QUANTITATIVE RESULTS OF UDH OUR CAIS UNDER DIFFERENT SETTINGS. ALL THE EXPERIMENTS ARE
PERFORMED ON THE IMAGENET DATASET [57]

Fig. 9. First three columns: the cover image, message image, and steganographic image. Middle three columns: residual can be computed if the cover image
is leaked and is subtracted from the steganographic image. Even with enough enhancement (20×), in most cases, the message image cannot be revealed. Last
column: reconstructed image from a steganographic image through our proposed CAIS method.

TABLE IX

OVERALL STEGANOGRAPHY DETECTION PERFORMANCE COMPARISON OF
DIFFERENT IMAGE STEGANOGRAPHY METHODS BASED ON

VARIOUS BACKBONES

We first adopt a general classification network (Inception-v3
[62]) to perform binary classification. To perform a fair com-
parison, 7000 cover–steganographic image pairs synthesized
from different image steganography methods are chosen for
training to obtain the corresponding steganalysis models and
2000 unseen pairs for evaluation. The classification accuracies
of different image steganography methods are reported in
Table IX. Our CAIS could achieve the lowest score 56.1%
among all the methods, which indicates that the steganographic
images generated by our CAIS have the best steganalysis per-
formance. Besides, two specially designed deep steganalysis
networks, CovNet [63] and SRNet [64], are performed to
verify the security of different image steganography meth-
ods. Following the same setup of the above Inception-v3
[62] steganography detection experiment, we conduct the
steganalysis experiments based on SRNet and CovNet. For
SRNet, the classification accuracy comparison of 2000 ran-
dom cover–steganographic image pairs is also included in
Table IX. Our CAIS can also achieve the lowest 75.3%
accuracy among all the steganography methods. As for the

Fig. 10. Fourier analysis of the message image and the information residual
between the cover image and the corresponding steganographic image.

more efficient CovNet, the steganalysis results of all the
other image steganography methods are above 90%, while
our score is 83.5%. From the overall comparison, our CAIS
has a stronger ability to evade steganography detection.
The proposed adversarial composition estimation module tar-
gets regressing the message composition from the synthetic
steganographic images, which provides a stronger constraint
for steganography detection than the binary classification loss.
With parallel adversarial training, our CAIS can resist various
types of deep steganalysis.

2) Information Residuals: In most cases, we can assume
that our original cover image would never be exposed to the
public to guarantee security or it is difficult to obtain the
original image based on the steganographic image. However,
what if it is leaked for some reason? In that case, what could
then be ascertained about the message image, even without
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Fig. 11. Pix2pix model using brute-force attack cannot reconstruct mean-
ingful message images correctly. For comparison, the reconstructed message
images by CAIS are also illustrated.

the revealing network? In Fig. 9, we provided the difference
between the cover image and the steganographic image as
information residual image. We examine the residual image
under the enhancement 5×, 10×, and even 20×, and almost
no private message information is visible, which indicates that
our method can resist high security when the original cover
images are available. Besides, we have also performed the
Fourier analysis on the message image and the information
residual in Fig. 10 following the same setup in UDH [42].
As shown, there is a clear frequency discrepancy between the
message image and the information residual between the cover
image and the steganographic image, which has demonstrated
that it is difficult for the attacker to reconstruct the message
information from the information residual.

3) Utility Analysis on Brute-Force Reverse Engineer: To
reveal a secret message from the steganographic images, the
attacker may perform a brute-force reverse engineer. In detail,
the attacker could obtain a lot of paired message images
and steganographic images (e.g., 5000 pairs) by uploading
different message images to synthesize corresponding stegano-
graphic images. We have optimized a paired message image
reconstruction network based on Pix2pix [65] and evaluated
this model using another 1000 unseen steganographic images.
The visual reconstruction results are shown in Fig. 11. The
average MSE loss between the reconstructions and raw mes-
sage images is 0.1278 and the PSNR is 9.922, which indicates
that the synthesized steganographic images from CAIS can
resist this kind of brute-force attack.

E. Robustness Analysis

1) Robustness to Compression and Noise: Considering that
there may be some information loss and compression during
the transmission procedure, we also explored the robustness
of the steganographic outputs to the compression and the
noise. First, we regard the JPEG compression as the main
compression during the transmission procedure and perform
experiments with different levels of JPEG compression. In our
settings, we choose JPEG quality with 85, 90, and 95 for
JPEG compression, while 95 is the default value of JPEG com-
pression. As shown in Fig. 12, the revealing network G can
still decode the visual private message with some content loss
from the compressed JPEG images. The average quantitative

TABLE X

QUANTITATIVE COMPARISON OF RECONSTRUCTION PERFORMANCE OF
DIFFERENT SETTINGS

results of 1000 samples are provided in Table X. At the default
JPEG compression setting (quality = 95), the PSNR score
changed from 27.70 to 20.29. Besides, we add different scales
of Gaussian noise to the steganographic outputs shown in
Fig. 12. Our CAIS cannot recover a clear message image from
the noise steganography when the noise level is larger than
N(0, 0.015). The corresponding average quantitative results of
1000 samples when adding different scales of Gaussian noise
to the steganographic images are also shown in Table X. Since
the distance between the cover and the steganographic output
is small, the noise attack does indeed harm the reconstruction
performance.

2) Robustness to LFM and Image Distortions: To make
CAIS robust to LFM, we follow the setup mentioned in [12]
and [42] to apply the geometric transform to the stegano-
graphic images. The visual results are shown in Fig. 13.
Following UDH [42], we compute the average bit error rate
(BER). Our CAIS has achieved 4.28%, which is comparable
with 4.41% achieved by UDH. We considered other types
of image distortions such as blurring, flipping, and random
cropping. We perform these operations on the steganographic
images and try to reconstruct the message information from the
modified images. All the visual results are shown in Fig. 13.
We can observe that CAIS can resist to the random flipping
and slight Gaussian blur. The proposed method achieves a
blur reconstructed message output under the random cropping
setting. We attribute this failure to the reason that the random
crop operation has broken the relationship between image
parts, which leads to information loss.

3) Robustness to Photoshop Transformations: We have
also considered some special transformations from Photoshop:
Country [66], Starlight [67], Solarize [66], and Crayon [67].
The Country operation aims to change the color of the entire
image similarly. The Starlight operation is to add the starlike
lights into the images. The Solarize transformation lets dark
areas appear light and light areas appear dark. The Crayon
operation is to add evenly distributed crayon lines to the
images. The qualitative results are shown in Fig. 14. As shown,
our method is robust to the Country transformation and has
adequate resistance to the Starlight and Solarize transforma-
tions. In contrast, our method failed to reconstruct meaningful
information under the Crayon transformation.

4) Failure Cases: Finally, we have provided the failure
reconstructions of our CAIS under an extreme compression
when JPEG quality is 50 in Fig. 15. The receivers cannot
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Fig. 12. We exhibit the visual reconstruction results at different JPEG compression qualities and adding different scales of Gaussian noise to the steganographic
outputs. The images in green boxes are the modified steganographic images and the images in red boxes are the corresponding reconstructed message images.

Fig. 13. Qualitative results of CAIS under LFM and image distortions. The images in green boxes are the modified steganographic images and the images
in red boxes are the reconstructed message images.

Fig. 14. Qualitative results under various Photoshop transformations. The images in green boxes are the modified steganographic images and the images in
red boxes are the corresponding reconstructed message images.

obtain any meaningful information from the degraded recon-
structed message images.

F. Capacity Analysis

We have also provided a discussion about the model capac-
ity of different methods. Reed–Solomon bits-per-pixel (BPP)

proposed in [9] was designed to measure the average number
of bits that can be reliably transmitted in an image. A higher
value indicates a greater capacity of the embedded information
that the algorithm can carry. SteganoGAN [9] only targeted to
hide the binary code into a large cover image with much more
information amount. Each pixel only hides D (the depth of the
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TABLE XI

QUANTITATIVE COMPARISON AMONG DIFFERENT SETTINGS

Fig. 15. Failure cases of our CAIS under the JPEG compression with JPEG
quality 50.

private message) binary information (either 0 or 1, typically
lower than 0.5 BPP). Similarly, HiDDeN [12] was less than
0.002 BPP. However, for hiding the same size message image
into another plain image task proposed in [21] and [25], each
pixel has to hide one Uint8 value for an 8-bit digital image.
Referring to UDH [42], the proposed CAIS and UDH have a
message capacity of 24 BPP. According to this comparison,
hiding the private message image into another plain image was
extremely challenging.

G. Further Analysis

1) Effectiveness of Part Checking: To show the impor-
tance of part checking, we removed Dp and evaluated the
improvement of the part checking. We reported the quantitative
comparison in Table XI. As shown, the part checking based on
the random cropped regions can promote the steganography
performance. We have also explored the influence of the
input image size of the part discriminator on steganography
performance. We designed four different part sizes: 96 × 96,
128 × 128, 160 × 160, and 192 × 192 for the part checking,
and the corresponding quantitative results are reported in
Table XI.

2) Effectiveness of Adversarial Composition Estimation:
The adversarial composition estimation procedure was intro-
duced to promote image steganography performance. By forc-
ing the generator to be composition-aware, our method could
promote the ability to hide message information and gen-
erate steganographic images with more naturalness (higher

Fig. 16. Training loss curve of Lest(F, Dg) and Lest(Dg).

TMQI scores) shown in Table XI. Besides, we have also
checked intermediate results (Lest(F, Dg) and Lest(Dg)) of
the adversarial composition estimation in Fig. 16. As illus-
trated, Lest(Dg) (not a constant value) could teach Dg how
to recognize the message information from the composite
images and guarantee the adversarial training could be contin-
uously conducted. With the adversarial training, Lest(F) was
approaching 0, which indicates that the proposed CAIS could
synthesize steganographic images that can fool the estimation
branch of Dg .

3) Effectiveness of the Perceptual Loss: We evaluated the
improvement of the perceptual loss Lper. Lper provided a bet-
ter reconstruction performance of the reconstructed message
images in Table XI. Lper could improve the PSNR score of
the reconstruction performance from 26.97 to 27.70.

4) Hyperparameter Selection: To show the influence of
choosing different hyperparameters: λ and γ in our method,
we conducted different experiments using different combina-
tions of these two hyperparameters. For λ, we choose four
different options: 0.1, 1.0, 10.0, and 100.0. Considering that
the perceptual loss computes the distance from five differ-
ent layers, the perceptual loss is larger than the pixelwise
loss. To better balance the two losses, we set two different
values: 0.1 and 1.0 for γ . To provide an intuitive compari-
son, we visualized the PSNR scores of both steganography
and reconstruction performance under different settings in
Fig. 17. From this figure, we observed that if λ was too large
(e.g., 100), Lpix played the most important role, and this
change of Lpix had not brought about obvious improve-
ment to the PSNR score of the reconstruction performance.
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Fig. 17. Visual quantitative PSNR scores of different combinations of the
hyperparameters: λ and γ . λ is the weight of the pixelwise loss and γ controls
the influence of the perceptual loss.

An approximate γ (e.g., 0.1) could boost the reconstruction
performance.

V. CONCLUSION

In this article, we proposed a novel image steganography
method called CAIS to achieve impressive image steganog-
raphy and message reconstruction performance. The adver-
sarial composition estimation has boosted the synthesis of
steganographic images and promoted steganalysis performance
through self-generated supervision. To further reduce the
visual artifacts, we combined the global-and-part checking to
yield steganographic images with more naturalness. The per-
ceptual and the pixel-level losses were introduced to achieve
both better steganography and reconstruction performance.
Comprehensive experiments considering the security, robust-
ness, and capacity analysis have been performed on various
datasets. The proposed CAIS can also be extended to a general
framework with some small modifications. The experimental
results demonstrated the superior performance of our CAIS
than current state-of-the-art image steganography methods.
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