
CoralSRT: Revisiting Coral Reef Semantic Segmentation by Feature Rectification
via Self-supervised Guidance

Ziqiang Zheng1† Yuk-Kwan Wong1 Binh-Son Hua2 Jianbo Shi3 Sai-Kit Yeung1

1The Hong Kong University of Science and Technology 2Trinity College Dublin
3University of Pennsylvania

† corresponding author: zhengziqiang1@gmail.com; Project website: https://coralsrt.hkustvgd.com

missed	area	by	imagined	wholeoccluded	images

12.06

average	pairwise
distance

20.05

w/	CoralSRT	to	promote	seman=c	segmenta=onfeature	space	of	masked	fish/coral	images

Features	rec=fied	by
CoralSRT

human 
annotation

domain-specific
data

+1.96	mIoU

+3.69	mIoU

+0.74

-0.99

Fish

Coral

24.67

36.18
average	pairwise
distance

Features	from	founda=on	models	
(e.g.,	DINOv2)

add

remove

CoralSRT

Low	stochas=city
w/	structural	unit

High	stochas=city
w/o	structural	unit

Seman=c
segmenta=on

27.73

30.68

<latexit sha1_base64="5L6cb+FGxelnqI4tzBqcPGsVbJs=">AAAC3HicjVHLSsNAFD3G9zvqwoWbYBEqSElF1KUggu4UrC20tSTptIYmmTCZqKV0507c+gNu9XvEP9C/8M4YQS2iE5KcOfeeM/fOdePAT6RtvwwZwyOjY+MTk1PTM7Nz8+bC4lnCU+GxkscDLiquk7DAj1hJ+jJglVgwJ3QDVnY7+ypevmQi8Xl0Krsxq4dOO/JbvudIohrmck2ya9kLj3ipX9vI19LYEYJfrTfMnF2w9bIGQTEDOWTrmJvPqKEJDg8pQjBEkIQDOEjoqaIIGzFxdfSIE4R8HWfoY4q0KWUxynCI7dC3Tbtqxka0V56JVnt0SkCvIKWFNdJwyhOE1WmWjqfaWbG/efe0p6qtS3838wqJlbgg9i/dZ+Z/daoXiRZ2dQ8+9RRrRnXnZS6pvhVVufWlK0kOMXEKNykuCHta+XnPltYkund1t46Ov+pMxaq9l+WmeFNV0oCLP8c5CM42C8XtwvbJVm7vIBv1BFawijzNcwd7OMQxSrr+BzziyTg3boxb4+4j1RjKNEv4toz7d4ycmPg=</latexit>

mIoU (")

original rec=fied

+2.95

+2.95
mIoU

 CoralSRT-          

CoralSRT
-COCO

Fish Coral Fish Coral

Figure 1. Corals can grow in diverse shapes, textures, and regions, thus leading to high physical and appearance stochasticity. It is challenging
to acquire visually consistent knowledge for segmenting corals, in contrast to segmenting objects (e.g., fish). We measure the feature
distribution of 400 masked fish and coral images extracted from foundation models (FMs), and found that the average pairwise distance
among coral samples is higher than that of fish. We propose CoralSRT, an add-on self-supervised feature rectification module, to reduce the
stochasticity of coral features. Our method requires no human annotations, retraining/fine-tuning FMs, or even domain-specific data. The
key insight is to incorporate self-repeated, asymmetric, and amorphous properties of corals to strengthen within-segment affinity, leading to
more efficient label propagation in feature space and producing significant semantic segmentation performance gains.

Abstract

We investigate coral reef semantic segmentation, in which
multifaceted factors, like genes, environmental changes,
and internal interactions, can lead to highly unpredictable
growth patterns. Existing segmentation approaches in both
computer vision and coral reef communities have failed to
incorporate the intrinsic properties of corals, specifically
their self-repeated, asymmetric, and amorphous distribution
of elements, into model design. We propose CoralSRT, a
feature rectification module via self-supervised guidance, to
reduce the stochasticity of coral features extracted by pre-
trained foundation models (FMs), as demonstrated in Fig. 1.
Our insight is that while different corals are highly dissimilar,
individual corals within the same growth exhibit strong self-
affinity. Using a superset of features from FMs learned by
various pretext tasks, we extract a pattern related to the in-
trinsic properties of each coral to strengthen within-segment
affinity, aligning with centrality. We investigate features from
FMs that were optimized by various pretext tasks on signifi-
cantly large-scale unlabeled or labeled data, which already
contain rich information for modeling both within-segment

and cross-segment affinities, enabling the adaptation of FMs
for coral segmentation. CoralSRT can rectify features from
FMs to more efficient features for label propagation and
lead to further significant semantic segmentation perfor-
mance gains, all without requiring additional human super-
vision, retraining/finetuning FMs or even domain-specific
data. These advantages help reduce human effort and the
need for domain expertise in data collection and labeling.
Our method is easy to implement, and also task- and model-
agnostic. CoralSRT bridges the self-supervised pre-training
and supervised training in the feature space, also offering
insights for segmenting elements/stuffs (e.g., grass, plants,
cells, and biofoulings).

1. Introduction
Coral reefs [17, 24, 27, 45] are among the most diverse and
valuable ecosystems on earth, creating habitats that harbor
an estimated 32% of all named marine species. Perform-
ing large-scale coral reef monitoring with minimal human
annotations is essentially valuable for ecological survey-
ing. Coral reef semantic segmentation (CRSS for short)
is widely favored and urgently required to support cover-
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age computation [7], coral distribution [21], semantic 3D
reconstruction [18, 30], and local reef research [44].

Existing CRSS works [7, 12, 35, 54, 60], that are mainly
data-driven or based on Superpixels [3, 40], fail to explain
the core challenges of coral segmentation, and essential dif-
ferences between segmenting objects (e.g., car, human, fish,
i.e.) and corals. In this work, we first explore the charac-
teristics of corals and how they grow, influenced by various
multifaceted factors. The shapes, appearance and distribu-
tion of corals are inherently probabilistic, characterized by
stochasticity and unpredictability, which can arise from a
variety of sources, such as gene variance [48], environmen-
tal influences leading to dead or bleaching events [32], and
biological interactions (e.g., competition for space, light, and
resources) causing changes of growth forms [60].

General object segmentation, while having to deal with
complex object shapes, is a predictable task: we can imagine
the whole fish even if it’s partially occluded. In contrast,
corals can grow in almost any shape, boundary, or region.
There is no general knowledge that predicts how corals grow
when some areas are occluded, as shown in Fig. 1. Segment-
ing coral reefs is more challenging than segmenting a fish
because prior structural knowledge can more readily define
a fish. Coral reef segmentation is not an isolated problem;
similar issues arise in domains exhibiting an amorphous
distribution of elements or substances [9]. These include de-
tecting cancer cells [15], segmenting plants or grasses [39],
and identifying biofoulings [29].

We revisit the CRSS task from the basic definition of
segmentation, which is to group imagery into regions (also
regarded as segments) that are homogeneous or semantic-
agnostic according to some implicit criteria such as color,
appearance, shape, implicit semantics, or texture, that can
be learned and encapsulated into fixed prior knowledge.

Instead, we argue that coral segmentation is more about
on-the-fly adapting to the growth pattern of a particular coral:
find a basis feature to model within-segment affinity, group-
ing homogeneous pixels into the same segment. This on-
the-fly adaptation also extends to reasoning cross-segment
affinity between segments, resulting in the semantic segmen-
tation outputs.

We simultaneously model self-evolving features within-
segment and cross-segment affinities based on recent foun-
dation models [10, 26, 33, 38, 43] (FMs). Since FMs are
optimized by various pretext tasks on a significant scale of
training data in a self-supervised [13, 14, 50, 59] or super-
vised manner [26, 38], FMs offer efficient tools for domain
researchers, allowing them to avoid collecting huge data and
optimizing models from scratch. In a prior work, building
on the promptable training, CoralSCOP [58] was devised
with a parallel semantic branch as the first CRSS foundation
model. In the context of coral reef analysis, can we directly
utilize these existing FMs for CRSS without introducing any

domain expertise or collecting huge coral reef data?
We propose CoralSRT (Coral Self-supervised

Rectification Training), a task- and model-agnostic method,
to adapt existing FMs for CRSS without any human annota-
tions, re-training/finetuning FMs [47, 58] or even without
coral reef images. Features from FMs already contain rich
information, and FMs can produce efficient self-supervised
guidance [26, 43], enabling the self-evolution of FMs. We
incorporate intrinsic self-repeated and amorphous properties
of corals to devise a self-supervised feature rectifier Rec(·),
which was optimized by model-generated guidance, and
can be strengthened by human supervision. The significant
performance gains were achieved by forcing features within
the semantic-agnostic segment to approach the centrality
(e.g., mean or median values) of the whole segment to
enhance within-segment affinity.

Our CoralSRT provides the following benefits:
1) bridging self-supervised pre-training for constructing

a general feature space and self-evolving guidance for an
instance-specific segmentation, along with a self-adaptively
constructed feature space;

2) obtaining shared commonsense knowledge for a do-
main with high stochasticity rather than overfitting to pre-
defined specific semantics;

3) adapting existing FMs to CRSS without introducing
any human annotations or finetuning FMs, demonstrating
the potential of FMs for domain research without collecting
data and model optimization from scratch;

4) re-utilizing readily available sparse point annotations
for obtaining dense semantic segmentation outputs while
possessing strong flexibility to satisfy reef research require-
ments. The main contributions of this work are summarized:
• We have revisited CRSS, regarding the segment as a basis

to model within-segment and cross-segment affinities.
• We demonstrate that performing label propagation in the

feature space enhanced by CoralSRT is more effective for
sparse-to-dense conversion than promptable segmentation
models due to intrinsic property of corals.

• Our method offers a novel perspective to model coral reefs
and promote the semantic understanding performance of
FMs with no additional labels.

We hope our research can inspire the further development of
the coral reef community and other similar research fields.

2. Related Work

2.1. Coral Reef Analysis
Corals are organisms that create the building blocks of coral
reef, which is a large, underwater structure made up of vari-
ous coral colonies [49]. Early coral reef analysis was limited
to sparse point based analysis (e.g., CPCe [28]), identify-
ing the sampled sparse points and computing coral statistics
based on identified sparse points. Further works (e.g., Coral-



Net [7, 12] and ReefCloud [1]) devised automatic image
classification algorithms to classify fixed size image regions
localized by sparse points to pre-defined semantic categories.
Hence, typically less than one thousand [23] of total image
pixels are actually analyzed with annotations, potentially re-
sulting in misleading coverage statistics. Meanwhile, sparse
point annotations cannot support advanced coral analysis
(e.g., boundary delineation [58], 3D semantic reconstruc-
tion [46], coral rugosity computation [44] and volume esti-
mation [56]). To address these issues, coral reef semantic
segmentation [25, 34, 60] aims to perform dense pixel analy-
sis. There are mainly two lines of works: 1) sparse-to-dense
conversion [2–4, 6, 36, 40, 42] for label propagation based
on sparse point annotations and 2) data-driven CRSS, op-
timizing models with full supervision. CoralSeg [4] and
Fast-MSS [36] propagated the sparse point labels based on
the Superpixels [8]. For data-driven algorithms, various coral
reef datasets [21, 25, 46, 58] and benchmarks [56] with pre-
defined semantic label set have been proposed to boost the
coral reef segmentation performance. CoralSCOP [58] made
the first attempt to build a coral reef foundation model, with
the parallel semantic branch to enable discrimination of the
coral reefs from the background and further semantic classi-
fication. However, CoralSCOP is purely data-driven and it
does not consider the intrinsic properties of coral reefs.

2.2. Foundation Models

Foundation models (e.g., CLIP [38], DINO series [10, 19,
33], SAM series [26, 43]) have been widely adopted for
visual understanding. DINO [10] has shown an emerging
semantic understanding ability through knowledge distil-
lation in a self-training pipeline. DINOv2 [33] revisited
existing discriminative self-supervised methods, proposing
the learning of features at both the image and patch levels,
while also scaling up pre-training data. SAM [26] optimized
by vast and diverse training data with full supervision, has
demonstrated a strong ability to segment visual elements
with precise masks in a semantic-agnostic manner. Receiv-
ing various kinds of prompts (e.g, point, box, and mask)
from the user, SAM could yield the required mask through
interactive labeling and iterative refinement. SAM 2 [43]
extended SAM to the video domain by adding temporal con-
sistency. Considering there is a huge scale of sparse point
annotations available in the coral reef communities [23, 45],
it is intuitive to produce dense coral reef masks by inferring
SAM series or CoralSCOP with these sparse points as point
prompts. However, we investigate that such promptable seg-
mentation models are less effective for modeling coral reefs.
Instead, we propose to perform label propagation in feature
space of FMs to achieve CRSS.

1) Under-inclusive: missing some areas that are from same semantics.
2) Over-inclusive: grouping  inaccurate areas to conflicted areas.
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Figure 2. Promptable segmentation models (e.g., SAM and
CoralSCOP) leads to under-inclusive and over-inclusive outputs.
The mask with red edge is for illustration, not model-generated.

2.3. Limitations of Existing Approaches

There remain several challenges in existing CRSS ap-
proaches. Propagating sparse points to dense masks based
on Superpixels suffers from complex visual contents be-
cause Superpixels are typically generated to group pixels
into visually meaningful segments based on visual features,
without capturing higher-level semantics. Close-set seman-
tic segmentation algorithms [11, 51, 54, 60] based on full
supervision cannot generalize to unseen semantic categories
and have a weak zero-shot ability, heavily limiting the practi-
cality and violating the essential discovering purpose of reef
research [37]. Besides, it requires retraining the models for
local requirements, and it also requires collecting redundant
coral reef semantic masks for retraining/fine-tuning, which
involves significant human effort.

There are also barriers in using promptable-FMs to solve
CRSS. We demonstrate two intrinsic limitations of prompt-
able segmentation models (SAM series and CoralSCOP) in
Fig. 2 for CRSS since corals do not have a visually consistent
structural “unit” or “instance” to separate different masks.
The semantic ambiguity and inconsistent annotations be-
tween masks lead to under-inclusive outputs: the generated
masks are not complete or accurate in revealing the whole
distribution of the corals based on given point prompts; and
over-inclusive outputs: masks contain some unnecessary
contents, e.g., grouping the non-coral areas into masks and
clustering different corals into the same mask, leading to the
conflicted area. Instead, we perform label propagation in the
feature space via feature clustering, leveraging the advantage
of global visual understanding.
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Figure 3. Framework overview of proposed CoralSRT to rectify features of frozen FMs based on model-generated mask guidance or human
annotations. We force features within each semantic-agnostic segment to approach its centrality to reduce the stochasticity of coral features,
leading to more efficient features for label propagation in the feature space. On the right hand side, we demonstrate Rec(·) is learning
high-dimensional features inside the segment via the centrality (e.g., median value), which is stable between different inferior segments due
to the intrinsic self-repeated and amorphous properties of corals.

3. Method

3.1. Segment Affinities

We define a segment as a connected region of pixels sharing
the same implicit semantics. We model within-segment and
cross-segment affinities to reduce intra-segment variance and
enhance inter-segment differences.
Within-segment affinity. We aim to strengthen the within-
segment affinity based on model-generated guidance, which
was masks generated by FMs [26, 43, 58]. Consider-
ing that semantic-agnostic training [26, 43, 58] was es-
sentially devised for grouping pixels into homogeneous
regions with implicit semantics, we utilize the power-
ful FMs like SAM 2 [43] to automatically generate scal-
able dense masks/segments. Unlike existing approaches
that adopt pixel-level supervision from pre-defined label
sets [11, 16, 51] or semantic-agnostic training [26, 43], we
propose to design a self-supervised segment-based rectifi-
cation in the feature space of various FMs to strengthen
within-segment affinity (details in Sec. 3.2). Our method
forces the features within the same semantic-agnostic seg-
ment to approach the centrality of the whole segment, incor-
porating self-repeated and amorphous properties of corals.
Furthermore, the mask guidance could also be from humans
to embed user preferences. Our method not only leverages
the compact feature space of FMs optimized with large-scale
pre-training data but also makes more efficient use of the
model-generated guidance in a semantic-agnostic manner,
without introducing any human annotations.
Cross-segment affinity. In this work, we do not explicitly
model cross-segment affinity based on human supervision
(e.g., designing discrete one-hot labels [21, 60], combining
hierarchical taxonomy [47] or text annotations [38, 57, 58]).
Instead, we emphasize the importance of large-scale pre-

training for modeling cross-segment affinity due to general
semantic uncertainty and biology-specific features (e.g.,
reticular pattern of corals and inefficient visual expression,
discussed in Supplement). The semantic uncertainty arises
from the fact that the semantic correspondences can be de-
fined from various and complicated dimensions (e.g., using
general color, texture, shape, geometry, and domain-specific
species, genus, and growth form metrics). The implicit se-
mantic correspondences are also highly subject to the whole
data distribution, like larger and diverse training data usually
contain more comprehensive semantics. We propose to con-
duct label propagation [52, 55] via feature clustering in the
feature space, encapsulate the model with strong flexibility
to various requirements and generalization ability to unseen
data. The users can also design different label sets for their
local data without pre-defining fixed semantic categories,
satisfying the intrinsic discovery purpose of reef research.

3.2. Self-supervised Rectification
Given image I ∈ RH×W×3 and frozen feature extractor f(·)
as illustrated in Fig. 3, where f(·) could be from any FMs
that were optimized by various pretext tasks, we obtain fea-
tures F ∈ Rh×w×c at any feature size. h, w and c indicate
height, width, and channel of F. I is paired with a set of
dense masks {mi}N1 without semantics. {mi}N1 are gener-
ated by FMs (e.g., SAM series [26, 43] or domain-specific
CoralSCOP [58]) or from human annotation. We construct
target feature F

′
with same shape as F as the self-supervised

guidance:

F
′
= F⊙m, for m ∈ {mi}N1 , (1)

where ⊙ is a segment-based rectification operation (comput-
ing the median or mean value of features of the segment and
assigning that value to all features within the segment) over



the channels. Then we optimize our Rec(·) based on the
standard squared l2 norm:

L = ∥F′ − Rec(F)∥. (2)

Rec(·) is not learning to mimic segmentation masks from
FMs, instead, it is learning global features inside of the
mask via the centrality. We then conduct label propagation
to perform sparse-to-dense conversion based on rectified
features by Rec(·). Our method is easy to implement and is
both task- and model-agnostic.

4. Experiments
4.1. Datasets and Comparisons
Datasets. We have curated the largest coral reef dataset
to date, named CoralWorld, which contains 2.64 million
images with no labels from across the globe. We use the
CoralWorld dataset to explore the relationship between pre-
training data and the constructed feature space. We adopt
CoralMask [58] dataset for optimizing CoralSRT. We use
SAM 2 [43] to generate dense masks for the CoralMask
dataset, leveraging its fast inference time. Besides, it was
not specifically optimized by coral reef masks, also allowing
us to better dissect our method. We also used other coral
reef datasets such as HKCoral [60] and Mosaics UCSD [21]
for training and evaluation.
Construction of testing set. To measure the ability of vari-
ous methods to generate dense semantic masks from labeled
sparse points, we construct our testing set considering both
diversity and coverage. Different from the existing Coral-
Mask dataset, which only provides the binary coral reef mask
annotation, the constructed testing set contains various se-
mantic label sets according to the local requirements. We
collect testing images from 10 different countries or sites.
The images are from public websites/datasets or local coral
reef biologists. Each subset contains at least 100 images
(except Deep Sea set with 77 images) and the label set is
site-specific. Our testing set, consisting of 1,109 images in
total, is the first to include coral reef images captured from
multiple countries/sites, accompanied by dense semantic
mask annotations.
Evaluation metrics. We adopt mIoU and mPA as the main
evaluation metrics. Different from the existing evaluation set-
ting to compute class-level mIoU and mPA scores, we com-
pute image-level mIoU and mPA scores (average IoU/PA
scores of all the semantic classes within each image and we
remove non-defined and background classes for evaluation)
considering two factors: 1) the semantic class distribution
of coral reefs is highly imbalanced, e.g., some minor coral
categories only appear only once; 2) it is tricky to fairly
compute class-level mIoU and mPA scores for prompt-based
algorithms since there will be conflicted areas between gen-
erated masks from two separated sparse points with different

semantic classes. Considering these two factors, image-level
mIoU and mPA are more robust, and we report the aver-
age scores of all the testing images. More details are in the
supplementary file.
Comparisons. We compare our CoralSRT with exist-
ing algorithms, including the foundation models (general-
purpose SAM [26], SAM 2 [43], DINO [10], DINOv2 [33],
DINOv2 register [19], and coral reef foundation model
CoralSCOP [58]) and specialist algorithms (CRSS and
sparse-to-dense algorithms). We have also included the fea-
ture denoising method DVT [53] and feature upsampling
FeatUp [22] for comparison. We adopt DeeplabV3 [11],
SegFormer [51] and Mask2Former [16] for CRSS. For the
sparse-to-dense algorithms, we compare Superpixel-based
algorithm Fast-MSS [36] and deep learning based algorithms
(PLAS [40]) and HIL [42].
Implementation details. We adopt the same architecture as
DVT [53] to transform F into F

′
except we removed the posi-

tional embedding. Unlike DVT [53], which uses a two-stage
training process where the first stage, involving denoised
feature production, takes around 2.5 minutes per image on
a GTX 3090, making scalable training challenging with
academic resources, our method only requires automatically
generated dense masks from SAM 2 (around 43.6 images per
minute under the same experimental conditions, making it
109 times faster than DVT for preparing target features). The
core code of our method is also easy to implement with few
code modifications as described in Sec. 3.2. We differentiate
between models optimized with model-generated masks and
human-annotated masks using CoralSRT and CoralSRT-
respectively. We adopt the 299,557 coral reef masks (no
semantics) from CoralMask dataset to optimize CoralSRT- .

4.2. Sparse-to-dense Conversion
Comparison with Superpixel-based algorithm. We
demonstrate that CoralSRT has a much stronger ability
to generate accurate and precise dense masks than Fast-
MSS [36] as reported in Table 1. As analyzed by [36],
usually more than 300 sparse points would lead to reason-
able conversion results.
Comparisons with foundation models. We compare
FMs from two settings: Prompt-based marked with ♠
(SAM [26], SAM 2 [43] and CoralSCOP [58]) and Feature-
based marked with ♣. In the former prompt-based setting,
we use annotated sparse points as point prompts to infer the
promptable segmentation models and generate dense masks.
In the latter feature-based setting, we apply KNN clustering
(K=1) based on features from different models and the pro-
vided labeled sparse points to generate dense masks, also
specifying the feature size. We present the comparisons us-
ing the same sparse points across different settings in Table 1
and the qualitative results in Fig. 4.

From the results, we have the following key observa-



Table 1. The quantitative sparse-to-dense results for various algorithms using different numbers of labeled sparse points: 5, 10, 20, 50, and
100. ♢ - Superpixed-based; ♠ - Prompt-based; ♣ - Feature-based. Best results are in bold.

Methods Backbone Feat. size 5 points 10 points 20 points 50 points 100 points
mIoU mPA mIoU mPA mIoU mPA mIoU mPA mIoU mPA

Fast-MSS♢ [36] − − 2.36 22.01 4.18 24.82 7.49 26.19 13.65 27.66 17.96 28.34

SAM♠ [26] ViT-H − 16.34 30.06 21.59 32.50 23.96 31.18 25.38 28.82 26.89 29.75
SAM 2♠ [43] Hiera-L − 15.09 27.24 20.21 30.97 24.96 33.09 27.01 31.47 28.13 33.18

CoralSCOP♠ [58] ViT-L − 18.14 31.78 23.56 33.67 26.16 34.98 28.78 34.67 30.18 36.78

DINO♣ [10] ViT-B/16 322 × 768 27.51 31.54 35.32 41.37 43.22 50.69 53.65 62.15 60.61 69.86
DINOv2♣ [33] ViT-B/14 372 × 768 27.73 30.64 35.63 40.53 43.66 49.99 53.85 61.61 60.23 68.87

DINOv2-Reg♣ [19] ViT-B/14/R4 372 × 768 28.46 31.63 36.80 42.03 44.54 51.05 54.59 62.51 61.13 70.00

SAM♣ [26] ViT-H 642 × 1280 24.64 29.77 31.69 39.37 39.35 48.83 50.38 61.25 58.27 69.66
CoralSRT (SAM)♣ ViT-H 642 × 1280 30.73 35.87 38.38 45.94 46.34 54.92 56.54 66.34 63.14 73.23

SAM 2♣ [43] Hiera-L 642 × 576 23.59 28.47 30.47 38.17 38.26 47.18 49.95 60.25 58.39 69.21
CoralSRT (SAM 2)♣ Hiera-L 642 × 576 27.45 32.11 35.33 42.55 43.48 51.67 54.22 63.91 61.24 71.71

CoralSCOP♣ [58] ViT-L 642 × 1024 26.18 30.71 33.56 40.46 41.10 49.71 51.38 62.25 58.97 70.45
CoralSRT (CoralSCOP)♣ ViT-L 642 × 1024 31.93 35.19 40.00 45.50 48.20 54.97 58.67 67.23 65.46 74.32

DVT (DINOv2)♣ [53] ViT-B/14 372 × 768 30.02 32.98 38.07 43.25 45.83 52.43 55.69 63.67 61.73 70.61
CoralSRT (DINOv2)♣ ViT-B/14 372 × 768 30.68 34.53 38.95 44.86 47.35 54.15 57.46 65.57 63.40 72.07

FeatUp (DINO)♣ [22] ViT-S/16 5122 × 384 28.27 32.08 36.48 42.14 45.01 51.59 55.68 63.51 62.83 71.10
FeatUp (DINOv2)♣ [22] ViT-S/14 5182 × 384 29.40 32.45 38.01 42.97 46.42 52.44 57.11 64.51 64.32 72.31

CoralSRT+FeatUp (DINO)♣ ViT-S/16 2242 × 384 31.24 35.07 39.68 45.18 47.47 54.26 57.14 65.35 63.18 72.17
CoralSRT+FeatUp (DINOv2)♣ ViT-S/14 2242 × 384 31.45 35.12 39.87 45.28 48.05 54.75 58.65 67.41 65.78 74.76

w/	labeled	points SAM CoralSCOP SAM	2 DINO

DINO	v2 DVT GTFeatUp CoralSRT

Figure 4. The sparse-to-dense conversion results of various algo-
rithms using 100 randomly sampled labeled sparse points.

tions: 1) Performing sparse-to-dense conversion in the fea-
ture space demonstrates a stronger ability to generate more
accurate coral reef masks than promptable segmentation
models due to under-inclusive and over-inclusive mask out-
puts. We provide more analysis in the supplementary mate-
rial. 2) The features from the DINO series (DINOv2 with
registers performs best among the three) possess more im-
plicit semantic feature representations for label propagation
than features from SAM series (even with a larger feature
size). We attribute this to that promptable segmentation mod-
els over-emphasized local regional information under full su-
pervision. 3) CoralSRT could effectively strengthen within-
segment affinity of SAM and SAM 2 in the feature space
with significant performance improvements. 4) CoralSCOP
optimized by dense coral masks has more efficient features
for label propagation than SAM series and demonstrated a
higher upper bound when equipped with CoralSRT. 5) The
high-resolution features (e.g., 518 × 518) of FeatUp yield
accurate dense masks and CoralSRT could beat FeatUp even

DVTDINOv2 CoralSRTFeatUp GT

image SAM SAM	2 DINOCoralSCOP

Figure 5. PCA (first 3 components) visualization of features. Fea-
tUp, DVT and CoralSRT are using DINOv2 features.

with a much smaller feature size of 37× 37 when using few
sparse points (less than 50 points). 6) Combined with Fea-
tUp for feature upsampling, CoralSRT achieves remarkable
performance. To better illustrate the effectiveness of fea-
tures from various FMs, we provide the PCA visualization
of extracted features in Fig. 5.

Comparison with sparse-to-dense algorithms in a zero-
shot manner. We then conduct zero-shot experiments on the
testing set of the Mosaics UCSD dataset [21] with the com-
parison of specialist algorithms: Fast-MSS [36], PLAS [40],
and HIL [42] (based on DVT [53]) using different num-
bers of sparse points in Table 2. All algorithms utilize the
same sparse points. Our CoralSRT outperforms existing al-
gorithms in generating accurate dense semantic coral reef
masks, despite not being optimized on the Mosaics UCSD
dataset. Additionally, we have considered the impact of
sparse point selection on segmentation results (discussed in
our supplementary file).



Table 2. Quantitative zero-shot comparisons with specialist algo-
rithms on Mosaics UCSD dataset [21].

Methods 5 points 10 points 20 points 50 points
mIoU mPA mIoU mPA mIoU mPA mIoU mPA

Fast-MSS [36] 4.69 24.47 8.61 33.67 15.09 41.13 29.46 51.66
PLAS [40] 12.81 14.58 18.19 21.64 24.15 29.21 35.76 42.28
HIL [42] 16.74 18.94 24.28 28.45 31.78 37.87 42.52 50.91

FeatUp (DINO) [22] 15.78 17.81 23.62 27.60 31.62 36.92 43.22 50.80
FeatUp (DINOv2) [22] 15.93 18.02 23.65 27.66 31.72 37.34 43.73 51.40
CoralSRT (DINOv2) 18.15 20.98 26.45 30.67 33.27 40.01 44.66 53.03

4.3. Semantic Coral Reef Segmentation
In this section, following the setting of [4, 40], we pro-
vide comparisons with supervised semantic segmentation
algorithms, where three widely used algorithms were con-
ducted on HKCoral dataset [60]. We follow the official
training/testing split and compare the algorithms under two
settings: 1) Pseudo dense masks: we optimize three base-
line models based on training images with generated dense
masks (regarded as pseudo labels). The pseudo labels are
from the sparse-to-dense conversion based on CoralSRT us-
ing different numbers of sparse points randomly sampled
from the ground truth of training images. After optimiza-
tion, we infer the optimized models by pseudo labels with
the testing images and report the results in Table 3, where
we could indirectly measure the quality of converted dense
masks since high quality pseudo labels result in strong mod-
els. For better comparison, we report the results of “Oracle”,
which utilizes the ground truth of the training images for
optimizing the baseline models. 2) Inference only. We
consider the setting without any training/fine-tuning. We
directly infer CoralSRT (denoted as CoralSRT‡) with test-
ing images using the same numbers of sparse point annota-
tions sampled from the ground truth of the testing images.
By comparing these two settings, CoralSRT based on la-
bel propagation in the feature space of FMs is competitive
or even better than supervised semantic segmentation algo-
rithms (e.g., DeeplabV3 and Mask2Former) optimized by
ground truths due to larger network compactness and sig-
nificant training data of FMs. The pseudo labels generated
by CoralSRT exhibit high fidelity compared with ground
truth masks, showing the promising potential of converting
already available redundant sparse point annotations to dense
masks. Finally, the competitive results of CoralSRT‡ with
few point annotations also demonstrate that CoralSRT with
strong flexibility can better satisfy various local reef analysis
requirements without collecting dense masks and optimiz-
ing models from scratch. Above experiments are based on
rectified DINOv2 features by CoralSRT.

4.4. Ablation Studies
First, we aim to answer two longstanding and valuable ques-
tions: 1) Can more efficient features be obtained based on
self-supervised training by continuously increasing the scale
of training data? and 2) Is large-scale, high-quality, domain-
specific data essential? To investigate these, we conduct

Table 3. The CRSS performance of various algorithms on testing
set of HKCoral dataset [60]. CoralSRT‡ indicates CoralSRT is
inferred via a training-free manner. Best viewed in color.

Settings DeeplabV3 [11] SegFormer [51] Mask2Former [16] CoralSRT‡

mIoU mPA mIoU mPA mIoU mPA mIoU mPA

Oracle 38.88 51.24 77.75 85.43 62.33 70.76 Uncomputable

Pseudo dense masks from sparse-to-dense conversion via CoralSRT Infer only

10 points 26.65 44.98 51.65 67.79 19.77 25.74 53.79 62.89
20 points 32.17 55.15 61.33 75.48 34.89 43.59 62.52 71.82
50 points 33.44 49.80 68.27 79.38 53.97 63.08 70.23 79.64

100 points 35.21 50.25 70.41 79.63 60.18 69.28 75.29 83.99

Table 4. Investigating the features from different DINO models
(ViT-B/16) optimized on different datasets with data scale specified
(millions). Readers are suggested to compare results of 1) using
different data scales; 2) with and without CoralSRT and 3) using
similar data scales.

Datasets CoralSRT 5 points 10 points 20 points 50 points
mIoU mPA mIoU mPA mIoU mPA mIoU mPA

ImageNet-1K [20]
(1.28M)

✘ 27.51 31.54 35.32 41.37 43.22 50.69 53.65 62.15
✓ 30.78 35.40 38.52 45.32 45.96 54.39 55.15 65.03

BenthicNet [31]
(1.45M)

✘ 26.20 30.05 33.87 39.78 41.53 49.05 52.09 60.89
✓ 30.07 34.81 37.45 44.34 44.91 53.04 54.12 64.07

Seaview [23]
(1.08M)

✘ 26.71 30.09 34.71 40.06 43.08 49.82 53.96 61.76
✓ 30.83 35.25 38.62 45.21 46.19 54.03 55.53 65.25

CoralWorld-0.1M
(0.1M)

✘ 25.86 29.82 33.17 39.26 40.33 48.23 50.49 59.85
✓ 29.47 34.16 36.99 43.72 44.28 52.58 53.60 63.39

CoralWorld-1M
(1M)

✘ 27.37 30.93 35.39 41.02 43.66 50.64 54.12 62.18
✓ 32.03 36.19 39.60 46.06 47.10 54.65 56.28 65.83

CoralWorld
(2.64M)

✘ 27.89 31.25 36.05 41.38 44.14 50.81 54.43 62.17
✓ 32.28 36.36 40.15 46.13 47.42 54.83 56.41 65.51

experiments on ImageNet-1K [20], BenthicNet [31], Seav-
iew [23] and our CoralWorld in Table 4, where we choose
DINO [10] for experiments. We construct two subsets of our
CoralWorld dataset: CoralWorld-0.1M and CoralWorld-
1M with 0.1 and 1 million randomly sampled images from
the whole dataset, respectively, to explore influence of data
scale to optimized feature space. We use same experimental
setting and train models from scratch, except for ImageNet-
1K dataset, in which we employ the officially released model.
We perform sparse-to-dense conversion based on features
from DINO models optimized on different datasets. We
summarize following insights from experimental compar-
isons: 1) FMs optimized by diverse and large-scale natural
images (e.g., ImageNet-1K) have a strong transferability to
domain images: better performance than Seaview dataset
with pure coral reef images. 2) Solely scaling up pre-training
data could only lead to a bit of performance improvement,
comparing results of CoralWorld-0.1M, CoralWorld-1M,
and CoralWorld. 3) Data diversity and coverage are impor-
tant for domain research, comparing results of BenthicNet,
Seaview, and CoralWorld-1M with similar data scale. 4)
CoralSRT achieves significant performance improvement
compared with solely scaling up pre-training data or curating
high-quality pre-training data. It reveals that incorporating
intrinsic properties of corals into model design is more im-
portant and demonstrates the effectiveness of self-generated
guidance in the feature space. 5) The features rectified by
CoralSRT are also subject to the data quality and coverage
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Figure 6. PCA visualization of original, rectified (median value
based and without training), CoralSRT and CoralSRT- features.

Table 5. CoralSRT- and CoralSRT denote Rec(·) was op-
timized using human-annotated masks and model-generated
masks from SAM 2, respectively. CoralSRT-COCO denotes Rec(·)
was optimized by images from the COCO-Stuff dataset.

Methods 5 points 10 points 20 points 50 points
mIoU mPA mIoU mPA mIoU mPA mIoU mPA

SAM 2 23.59 28.47 30.47 38.17 38.26 47.18 49.95 60.25
CoralSRT-COCO(SAM 2) 26.66 30.72 34.50 40.83 42.21 49.55 53.06 62.00

CoralSRT(SAM 2) 27.45 32.11 35.33 42.55 43.48 51.67 54.22 63.91
CoralSRT- (SAM 2) 28.22 32.60 36.04 42.92 43.96 51.96 54.45 64.11

DINOv2 27.73 30.64 35.63 40.53 43.66 49.99 53.85 61.61
CoralSRT-COCO(DINOv2) 29.68 32.84 38.05 43.19 46.07 52.40 56.20 63.83

CoralSRT(DINOv2) 30.68 34.53 38.95 44.86 47.35 54.15 57.46 65.57
CoralSRT (DINOv2) 31.42 34.74 39.88 45.22 47.95 54.53 57.65 65.82

of data used for pre-training: CoralWorld-1M (w/ CoralSRT)
is better than Seaview (w/ CoralSRT).

We then consider an extreme case where we have no coral
reef images. We randomly sample 40,000 images (similar
size as CoralMask for a fair comparison) from the COCO-
Stuff dataset to optimize CoralSRT, named CoralSRT-COCO.
Meanwhile, we also explore gap between model-generated
supervision and human annotation for optimizing Coral-
SRT. We conduct these experiments based on DINOv2 and
SAM 2 features. Results are presented in Table 5. By com-
paring the features of vanilla SAM 2 and CoralSRT(SAM 2),
we conclude that it is promising to adapt SAM 2 for CRSS
task by strengthening within-segment affinity without intro-
ducing any human supervision. The performance improve-
ment of CoralSRT(DINOv2) over DINOv2 also reveals that we
can boost the CRSS performance via rectifying DINOv2 fea-
tures based on the constructed self-supervision from SAM
2. By comparing CoralSRT and CoralSRT- , the small per-
formance gap indicates the low reliance of CoralSRT on
human annotation, while CoralSRT could achieve promising
performance gains. We also notice that CoralSRT-COCO
could promote the performance without access to coral reef
images. We attribute such performance improvements to
shared underlying principles for grouping pixels into seg-
ments, such as geometry, repeated texture, self-similarity,
and biological appearance. Our method could effectively
learn such principles and achieve performance gains, even
optimized by general images without any human supervision.
These promising results demonstrate the values of CoralSRT
to reduce human effort and the need for domain expertise in
data collection and labeling.

Table 6. Dissecting effectiveness of Rec(·) and various rectifying
operations. We directly utilize F

′
for label propagation under the

setting without Rec(·) except Vanilla setting (using F).

Settings Rec(·) 5 points 10 points 20 points 50 points
mIoU mPA mIoU mPA mIoU mPA mIoU mPA

Vanilla ✘ 27.73 30.64 35.63 40.53 43.66 49.99 53.85 61.61

Mean ✘ 27.83 30.11 35.64 39.69 43.02 48.30 53.21 59.44
Median ✘ 27.87 30.16 35.98 39.97 43.29 48.48 53.56 59.88

Mean ✓ 30.61 34.43 38.89 44.78 47.19 54.06 57.38 65.42
Median ✓ 30.68 34.53 38.95 44.86 47.35 54.15 57.46 65.57

Finally, we dissect whether Rec(·) of CoralSRT is nec-
essary since we can easily obtain dense masks generated by
SAM 2 for feature rectification without any training. We
infer SAM 2 with the testing images to generate masks and
conduct the segment-based feature rectification to obtain F

′
.

We have also investigated the difference between using mean
and median values as centrality. We conduct experiments
on DINOv2 features (“Vanilla”) and results are reported in
Table 6. As reported, it is necessary to optimize Rec(·) since
Rec(·) is learning shared and common knowledge inside re-
dundant masks to reduce the stochasticity via centrality. Only
conducting feature rectification with generated dense masks
from SAM 2 at test time heavily depends on the fidelity of
generated dense masks (potentially over-segmentation and
missing coral reef regions) as illustrated in Fig. 6. Such de-
terministic rectification process without any training cannot
help model to learn common knowledge to reduce stochas-
ticity of features for better semantic segmentation.

5. Discussions and Conclusion

Broader impact. One significant contribution of CoralSRT
to reef community is its flexibility and scalability to convert
redundant sparse point annotations to dense masks without
introducing any annotation or retraining/finetuning. Our so-
lution and insight can also be valuable for segmenting stuffs
(such as cells, seagrass [39, 41], algae [5], and plants). Limi-
tations. Our method, converting the annotated sparse points
to dense masks, cannot automatically generate separated
coral reef masks as CoralSCOP or SAM series.
Conclusion. In this work, we revisited existing CRSS and
promptable segmentation algorithms and found that existing
algorithms did not incorporate intrinsic properties of corals
into model design. We proposed a simple formulation for
CRSS, with the segment as a basis to model both within-
segment and cross-segment affinities. We propose CoralSRT
to strengthen within-segment affinity and leverage FMs to
model cross-segment affinity to preserve a strong flexibility.
Our algorithm does not shave straightforward scaling up of
dataset size or introducing additional human annotations,
while achieving significant performance gains over existing
approaches. These findings suggest a promising path towards
segmenting “stuffs” and conducting self-evolving of FMs
for better semantic understanding performance.
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