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Pixel Bleach Network for Detecting Face Forgery
under Compression

Congrui Li#, Ziqiang Zheng#, Yi Bin, Guoqing Wang, Yang Yang, Xuesheng Li, and Heng Tao Shen

Abstract—The existing face forgery algorithms have achieved
remarkable progress in how to generate reasonable facial images
and can even successfully deceive human beings. Considering
public security, face forgery detection is of vital importance,
making it essential to design face forgery detection algorithms
to detect forgery images over the Internet. Despite the great
success achieved by the existing Deepfake detection algorithms,
they usually failed to achieve satisfactory Deepfake detection
performance when deployed to handle the forgery videos in
practice. One significant reason is compression. The videos over
the Internet are inevitably compressed considering the trans-
mission efficiency. The video compression results in significant
Deepfake detection performance degradation for the existing
Deepfake detection algorithms. To address this issue, in this
paper, we propose a generic, simple yet effective “bleaching”
pre-processing module based on the generative model and the
high-level feature representations to produce a bleached image,
which shares a similar appearance with the compressed images.
The bleached images with recovered information can be identified
accurately by the optimized Deepfake detection models without
retraining. The proposed method has utilized a redesigned feature
representation, which serves as a navigator to effectively and
sufficiently alter the feature distribution in the high-dimensional
space to remedy the difference between real facial images and
forgery counterparts. Thus, the proposed method can successfully
avoid misclassification. Comprehensive and extensive experiments
are carried out on four low-quality Faceforensics++ datasets,
demonstrating the effectiveness of our method in recovering
the information loss caused by the compression artifacts across
various backbones and compression.

Index Terms—Deepfake detection, Robust Deepfake detection
under compression, Adversarial learning

I. INTRODUCTION

W ITH the emergence of deep learning algorithms [1]–
[6], lots of evolutionary progress has been achieved

in computer vision fields. One remarkable visual application
is the creation of forgery facial images (also referred to
as Deepfakes), which targets to change or manipulate the
facial expression of a person or even the identity information.
Deepfakes can be created in numerous ways. Among all
the Deepfakes algorithms, the notable one is to adopt the
generative adversarial networks (GANs) [5], [7] for con-
ducting the image or the video generation and alteration.
The flourishing progress of the deep neural networks and
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Fig. 1. The compression during the transmission procedures inevitably
introduces serious perturbation to the face forgery images in both the spatial
domain (top row) and frequency domain (bottom row).

the generative adversarial network [8] makes it increasingly
difficult for human beings to distinguish a real facial image
from the manipulated one. The synthesized forgery facial
images or videos are so realistic that they cannot be detected
by a non-suspecting person. When these facial image creation
techniques are unrestrictedly adopted, it has arisen a boom
of Deepfake APPs (e.g., FaceApps, ZAO, etc.), making it
available to the public to swap one’s faces or manipulate the
facial expressions following the Deepfake procedures.

The unauthorized/malicious usage of Deepfakes poses a
serious threat to legal, political, and social systems as they
can destroy the integrity of a person. The abuse of malicious
attacks is inevitable and thus causes severe security and
privacy issues. Therefore, it urges to promote the effectiveness
of the Deepfake detection algorithms in various situations.
To address these public issues caused by the Deepfake cre-
ation techniques, some Deepfake detection algorithms [9]–[12]
have been proposed to alleviate the dilemma caused by the
Deepfake images and videos. The existing Deepfake detection
algorithms have indeed achieved satisfying Deepfake detection
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TABLE I
THE QUANTITATIVE COMPARISON OF DIFFERENT METHODS UNDER

VARIOUS SETTINGS. THE TEXT IN RED, BLUE AND BOLD REPRESENTS THE
TESTING ACCURACY ON HQ DATA, TESTING ACCURACY ON LQ DATA AND

THE ACCURACY DROP, RESPECTIVELY.

Faceforensics++ [20]Method FaceSwap Face2Face

MesoInception4 [14] 90.47 / 57.99 (32.48↓) 84.14 / 50.37 (33.77↓)
Xception [19] 98.41 / 70.95 (27.46↓) 97.94 / 50.82 (47.12↓)
F3-Net [11] 98.20 / 71.35 (26.85↓) 97.04 / 51.62 (45.32↓)

performance under some specific settings.
To achieve accurate Deepfake detection, some specially de-

signed convolutional neural network (CNN) backbones [13]–
[15] have been proposed, which focus on the pixel-level modi-
fications or the visual artifacts generated by the Deepfake algo-
rithms. This line of work can obtain reasonable classification
results on high-quality forensic data with visual artifacts. The
detection performance will significantly degrade the forgery
data essentially and deliberately designed to evade the tracing.
Another line of the Deepfake detection algorithms is to shift
the visual images to another domain (e.g., frequency domain)
[11], [16]–[18] to perform detection. After the transformations,
the CNN models are optimized to detect some significant and
prominent feature representations to achieve performance gain.
However, the frequency domain based detection algorithms
are fragile to compression. The high-frequency signals on the
spectrum will be weakened if the origin Deepfake images are
compressed as illustrated in Fig. 1. The compression results
in catastrophic modifications to both the spatial and frequency
representations of the Deepfake images, which will lead to the
failure of Deepfake detection.

Considering that most of the existing Deepfake datasets are
either drawn from the website (e.g., Youtube) following the
MPEG4.0 and H.264 formats or have been post-processed
by compression for utility. The compression is general and
universal among all the Deepfake datasets. The compression
indeed lead to Deepfake detection performance degradation.
The quantitative results are illustrated in Table I. When the
Deepfake detection models trained on the high-resolution
video data are tested on the low-resolution video data, current
Deepfake detection algorithms (e.g., Xception [19], MesoIn-
ception4 [14], and F3-Net [11]) have an obvious performance
drop under this setting. In this paper, we target to alleviate
the influence of compression on Deepfake detection without
retraining the whole Deepfake detection model.

We propose a generic plug-and-play pre-processing mod-
ule to promote the Deepfake detection performance under
the compression setting. In detail, the optimized Deepfake
detection models based on high-quality forged facial images
are given and frozen during the training procedure. When
given the low-quality forged facial images (after various com-
pressions) for evaluation, the trained neural networks would
misclassify those compressed images. Our goal is to generate
a compression remedy based on the feature representations
of the compressed face forgery images in the frozen model.
We have designed a bleach generator for generating bleach
to correctly classify the wrongly classified samples. With the

designed bleach generator module, we can achieve robust and
accurate Deepfake detection even under compression. The
entire framework of the proposed method is illustrated in
Fig. 2. It is not trivial to achieve bleach generation because
of the interplay between the compressed images and the
frozen model. The generated bleach aims to correctly classify
the failed examples while leaving the successfully classified
examples undisturbed. The wrongly classified examples can
be divided into two subclasses: false negatives (FN) and false
positives (FP). The representations of these two categories will
be distributed on either side of the origin position in the feature
space during the optimization stage. It is a rigorous challenge
to bleach both subclasses successfully. The proposed approach
achieves a reasonable tradeoff between detecting both the low-
quality compressed face forgery images and the original high-
quality face forgery images.

Besides, we have designed two additional loss functions
to further align the feature spaces of the compressed face
forgery images and the high-quality counterparts. The former
compression remedy loss is responsible to formulate the
constraint between the bleached feature representations and
the target feature representations. The latter regularization loss
aims to achieve a balance between recovering the information
loss for the wrongly classified samples and guaranteeing true
positive samples are not distracted. To demonstrate the effec-
tiveness of our bleach generator, we conduct comprehensive
experiments based on three widely used Deepfake detection
backbones to verify the universality and effectiveness of the
proposed approach. Extensive analysis and ablation studies are
also conducted to demonstrate the stability of the proposed
approach. The superior results of the proposed approach show
that our method can succeed in bleaching wrongly classified
images. To sum up, our contributions can be summarized as
follows.

• We propose a universal image bleach generation module
based on the thought of adversarial machining learning
and combine a naive DCGAN [21] to bleach the com-
pressed face forgery images. Two additional loss con-
straints are designed for better bleaching feature distribu-
tion to ensure the negative samples could be recovered
correctly while keeping the labels of the positive samples
unchanged.

• We regard the compression as a significant adversarial
attack and we design a bleach generator to remedy
the compression without retraining the Deepfake detec-
tion models. The proposed method is plug-and-play and
generic, which could be extended to various Deepfake
detection algorithms.

• The comprehensive and extensive experiments based on
various detection backbones have been conducted on
FaceForensics++ datasets. The experimental results have
demonstrated the superiority of the proposed method.

The rest parts are organized as below. Section II briefly
introduces the related work and Section III elaborates the pro-
posed approach. Section IV presents the extensive experimen-
tal results on various datasets based on different backbones,
followed by the discussions and conclusion in Section V.
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Fig. 2. Illustration of our method. We feed the low-quality (LQ) face forgery samples into the frozen Deepfake detection model (abbreviated as “DFDM”),
e.g., Xception network [19] trained on the high-quality (HQ) face forgery images. The feature representations of the last full-connected layer are the input
of our “bleach generator” to synthesize a corresponding generated bleach. The generated bleach is then merged into the input forgery image to output the
bleached image for recovering the information loss caused by the compression. The bleached images can be correctly identified by the frozen DFDM without
retraining. The compression remedy loss Lrem is to align the distribution of LQ and HQ data while the regularization loss Lreg is designed for preventing
the collapse of the bleached image. To achieve the trade-off between detecting the wrongly classified samples and guaranteeing true positive samples are not
distracted, we construct a balanced offset training strategy to steadily optimize the whole framework.

II. RELATED WORK

A. Deepfake Detection

There have been manipulated with four face forgery tech-
niques: Face2Face, Deepfakes, FaceSwap, and Neural Tex-
tures. Some state-of-the-art generative models [22], [23] (e.g.,
PGGAN [24], StarGAN [25] and StyleGAN [26] and etc.)
can synthesize hyper-realistic fake face images with the res-
olution up to 1024 × 1024. These synthesized photo-realistic
images are widely spread on the Internet, which brings great
challenges to network security. Current Deepfake approaches
especially refer to the manipulation of human faces and these
forgery methods can be divided into two main categories: 1)
one is to swap two faces from different people to change
identity information; 2) the other is 3D face reconstruction
and animation methods [27]–[29]. Face2Face [1] is to transfer
specified action or expression to the targeted image and keep
other attributes. Some algorithms [11], [17], [18] aimed to
combine the statistics in the frequency domain as extra clues
to boost the Deepfake detection accuracy. The representative
F3-Net [11] proposed a novel method to achieve Deepfake
detection in the frequency domain. Besides, various methods
based on different motivations have been proposed. For exam-
ple, Wang et al. [30] introduced neuron monitoring to classify,
which tracks the characteristics of fake images by capturing
changes in activated neuron outputs through neuron coverage.
Liu et al. [15] utilized an improved Gram block to record the
rich texture information to successfully detect the fake images
generated by StyleGAN [26], StarGAN [25], etc [24], [31].

Dang et al. [13] proposed a single attention network to guide
the model to focus on the modified regions. Based on this,
Zhao et al. [32] introduced multi-attention heads in the spatial
domain to make the model focus on different local features
and introduced a texture enhancement module to zoom in on
the subtle artifacts. However, [32] suffers from the sensi-
tivity to compression since the compression will inevitably
lead to the changes of such subtle artifacts. The advanced
architectures [33]–[37] (including the transformer architec-
ture [34], [38], combining the additional text annotations [36]
and designing the multiple instance embeddings [33]) were
also introduced to the Deepfake detection field. Besides, to
foster the improvement of Deepfake detection, some public
datasets [20], [39] have been proposed to further promote
the Deepfake detection performance. Different from these
previous works, we aim to perform robust Deepfake detection
under the compression setting.

B. Deepfake Detection under Compression

Some attempts of Deepfake detection under compression
had been achieved in [40], [41]. The compression introduced
redundant noise or perturbations to the face forgery images and
made it more difficult to perform accurate Deepfake detection.
[42] introduced the temporary constraint to promote the detec-
tion performance of the compressed face forgery LQ videos.
The researchers [43] proposed to combine the paired LQ-HQ
data for super-resolution and achieved improvement for the
compressed face forgery images. However, this method heavily

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3301242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 06,2024 at 05:03:05 UTC from IEEE Xplore.  Restrictions apply. 



4

TABLE II
LIST OF SYMBOLS AND ABBREVIATIONS MENTIONED IN OUR PAPER.

Notation Description
C23 (HQ) data High-quality (quantization rate of 23) face forgery images
C40 (LQ) data Low-quality (quantization rate of 40) face forgery images
TP/FP True positive / False positive
TN/FN True negative / False negative
RECF Reconstructed and compensated feature
DFDM Deepfake detection model
Generated bleach Generated output from the feature representation extracted from DFDM
Bleached image The combination of generated bleach and corresponding Deepfake image
Jφ Jacobian of feature φ
I Prediction outputs calculated by ∆f

|∆|
I0 Original image
Ibl Bleached image
Lrem Compression remedy loss
Lreg Regularization loss

suffers from the overfitting problem. The recent work [44] uti-
lized optimal transport theory in knowledge distillation. To de-
tect low-quality compressed Deepfake images effectively, [44]
designed a teacher-student network, which has been trained
from different quality images to guide the student network
to learn discriminative features from the low-quality samples.
Zhang et al. [45] proposed to adopt the self-supervision to
achieve the decoupling for the Deepfake video detection.
The spatial and temporal feature representations were com-
bined [46] to promote the detection performance even under
compression. Some specially designed networks [47] were
designed to learn the robust feature representations under
various settings. Huang et al. [47] observed the trace caused by
imperfect upsampling algorithms within the GAN-synthesized
process. Huang et al. [47] introduced the gray-scale fakeness
prediction map to improve Deepfake detection accuracy. [48]
designed a two-stream network to combine the paired LQ-HQ
data for input and achieve robust Deepfake detection under
compression. However, it requires paired data for training and
evaluation. Haliassos et al. [49] proposed to combine the fine-
grained lips presentations for better Deepfake detection. Even
though some reasonable Deepfake detection results have been
achieved in the existing methods [32], [38], they require to
train the Deepfake detection models from scratch based on
the LQ data or retraining the trained models optimized by
the HQ data. Different from these methods, in this work, we
regard the compression as one significant adversarial attack
and we design a bleach generator to remedy the compression
without retraining the Deepfake detection models. The pro-
posed method is plug-and-play and generic, which could be
extended to various Deepfake detection algorithms and achieve
performance gain.

III. METHOD

A. Preliminary and Problem Formulation

We first illustrate the list of symbols and abbreviations men-
tioned in our paper in Table II to provide better readability. We
go through some basic knowledge mentioned in our paper and
the overview framework of the proposed method is shown in
Fig. 2. With the frozen Deepfake detection model optimized on
high-quality forgery images, the highly compressed Deepfake
images initially pass through the detection. We obtain the
high-level feature representations at the last fully connected

layer as the input of the following bleach generator, gener-
ating the corresponding bleach image based on the feedback
from the Deepfake detection model. We adopt a DCGAN-
like architecture [21] to do up-sampling and non-linear trans-
formation to get the same size output with the compressed
Deepfake images. Finally, the generated bleach (also regarded
as a perturbation) is merged into the compressed Deepfake
images as the bleached images following the adversarial attack
manner. The bleached images are then fed into the Deepfake
detection model and can be identified accurately. In detail,
the compression remedy loss Lrem is responsible to make the
distribution of low-quality forgery images (C23 data) approach
the distribution of high-quality forgery images (C40 data).
Considering the imbalance between the FP and TN samples,
we construct a balanced offset training strategy to alleviate the
influence of imbalanced data distribution. To avoid potential
misunderstandings, we provide detailed explanations about
how the compression affects the Deepfake detection models
and how to recover the information loss through the generated
bleach.

Compression as an attack. We regard the compression as a
critical adversarial attack to the forgery images and the Deep-
fake detection models. Given the pairs of (x∗, y∗) ∈ {X ∗,Y}.
The x∗ is the original image input while y∗ is the corre-
sponding label. The adversarial attack [50] aims to generate an
adversarial perturbation ∆x and put the perturbation into x∗

and generate the perturbed output x = x∗+∆x. The perturbed
data could mislead the trained classifier F on {X ∗,Y} causing
the misclassification: F (x) 6= y∗ = F (x∗). The compression
leading to the modification of x∗ is also a non-ignorable
adversarial attack to the Deepfake detection algorithms.

Bleach to recover. An intuitive strategy to defeat the adversar-
ial attack is to add a noise δ as a double attack to the perturbed
output to remedy the misclassification. We design a bleach
generator to recover those misclassified examples caused by
compression and try to avoid a practically viable tradeoff
between the probability of bleaching and overall accuracy
loss. The generated bleach as the “compression remedy”
could recover information loss caused by the compression and
further promote the Deepfake detection performance.

How to bleach? We simply the Deepfake detection problem by
focusing on the feature representation (from the last fully con-
nected layer) of the probabilistic classifiers: fy=〈wy, φ (x)〉,
where wy represents the class-specific parameters belonging
to class y and φ (x) represents the feature representations got
from the frozen model. The perturbation or compression on the
original images can lead to the shift of the feature representa-
tion from the original class to another class in the label space
expressed as: y 6= y∗ = argmaxy 〈wy, φ (x) + ∆φ (x)〉.
Under this setting, we cannot obtain the mapping function
from images to labels and we can only get the feature
expression of the images. We design ∆x, which can satisfy
‖φ (x) + ∆φ− φ (x+ ∆x)‖2 ≤ E . Thus, an intuitive strategy
is to utilize Jacobian to linear φ at x:

φ (x+ ∆x) = φ (x) + Jφ∆x+O
(
‖∆x‖2

)
, (1)
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Fig. 3. The illustration of proposed reconstruction and compensation strategy.
(a) illustrates the direct mapping of the feature to a symmetrical space (dashed
box) centered on the origin to obtain ∆φ∗ in Equ 2. (b) shows the balanced
offset training strategy to guarantee that the generated bleach can be effective
and efficient leaned based on even the imbalanced distribution between FN
and FP samples.

and we can approximately change Equ 1 to:

∆φ∗ = φ (x+ ∆x)− φ (x) = Jφ∆x, (2)

through this, we can turn this problem into a non-simultaneous
linear problem. It will require lots of time and computational
costs to directly solve this problem. We target to compute our
generated bleach ∆x to resort to the GAN [21] architecture,
which uses random noise to generate an RGB image.

B. Bleach Generator

In this section, we will illustrate how the proposed bleach
generator synthesizes the compression remedy. The LQ data
are firstly fed into the classifier as shown in Fig. 2. We choose
Xception [19] as the network backbone for illustration. Xcep-
tion is the most universal classifier in the Deepfake detection
task, which was first evaluated on the FaceForensics++ dataset
[20] and now has become the standard Deepfake detection
network backbone choice. We obtain the wrongly classified
examples based on the frozen model and the corresponding
feature representation φ (x) at the last fully connected layer.
Then, φ (x) is fed into the bleach generator. The bleach
generator consists of two parts: 1) feature reconstruction and
compensation; 2) a generator to generate the same size bleach
following the naive DCGAN manner [21].
Feature reconstruction and compensation. The network
structure of feature reconstructing and compensation is shown
in Fig. 3. We propose an effective method to map the original
feature φ (x) to the symmetric point in the feature space. The
procedure of from φ (x) to ∆φ∗ is described as:

∆φ∗ = −φ (x)− φ (x) = −2φ (x) , (3)

the binary classification formulates a solution space spanned
by ∆f = 〈∆w, φ (x)〉. For the two predicted labels, the ∆f
will be either positive or negative according to our observa-
tions. Since ∆w has been fixed, the two solution spaces are
only influenced by ∆f , leading to two components distributed
on both sides of the origin. It is difficult to optimizer both
solution spaces because the two representations from the
opposite side may conflict and disturb each other. In most

cases, the true negative and false positive samples are highly
imbalanced. The model will tend to focus on the dominant
examples in this case. To mitigate this problem, we propose
a balanced offset training strategy by controlling the distance
of the feature from the origin. In detail, we aim to adjust the
∆φ∗ as follows:

∆φ∗ = −2φ (x) +m · I× φ (x) , (4)

where m = 0.7 in our experiments. m is a constant value
to measure the intensity of the offset and I controls which
direction to mitigate the imbalance. I is calculated by the
feature representation ∆f

|∆| . Then we reshape the output ∆φ∗

to 8 × 8 × 32. We adopt a naive DCGAN architecture to
increase the dimension of this feature representation to obtain
a 299 × 299 × 3 generated bleach (the same size as the
compressed images). Then the generated bleach is added
to the compressed image and the output is fed into the
Deepfake detection model to promote the Deepfake detection
performance under the compression setting.

C. Loss Functions

1) Compression Remedy Loss: Our target goal is to recover
the information loss caused by the compression and promote
the overall Deepfake detection accuracy. To recover the in-
formation loss, an intuitive way is to utilize the deep metric
learning loss [51], [52] to provide some constraints to reduce
the distance between bleached feature representation φbl and
the target feature representation φtar. However, the feature
distribution of the manipulated faces generated by different
Deepfake algorithms changes from different algorithms. Even
for the samples from the same distribution, the samples are
also quite diverse. To build a universal bleach network that
can be adopted on varied Deepfake data and diverse Deepfake
detection models, we aim to minimize the distance between the
bleached feature (denoted as φbl) and to obtain reconstructed
and compensated feature representation.

Besides, we simultaneously push φbl away from the ori-
gin to force those true positive and false negative examples
separate from false positive and false negative samples, in
which we achieve the goal through a filtering mechanism as
the following formula:

Lrem =
1√
B

√√√√ N∑
1

‖φbl − φtar‖2 ∗ E−

τ√
B

√√√√B−N∑
1

‖φbl‖2 ∗ (I− E),

(5)

where N indicates the number of false positives and false neg-
atives in a single batch and B is the batch size and E represents
the distribution of false positives and false negatives to achieve
the filtering. With this designed compression remedy loss, the
model could learn to recover the information difference be-
tween the high-quality images and the low-quality images. The
filtering mechanism can help obtain more effective samples
for modeling these differences. In our experiments, we set
τ = 0.2 based on our observations to control the balance
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between pushing and pulling in the compression remedy loss
Lrem.

2) Regularization Loss: Considering the generated image
is added into every image, to achieve the trade-off between
accurately identifying the false negative samples while not
distracting the true positives, we design an effective way to
normalize the generated bleach. We formulate this regulariza-
tion loss as follows:

Lreg =

√√√√ 1

M

M∑
1

‖k · Ibl − I0‖2, (6)

where M is the number of elements for the input image. Ibl
is the bleached image and I0 represents the LQ face forgery
image after compression. We introduce the hyper-parameter k
to normalize/control the value of the generated bleach. A very
large value of the generated bleach will lead to the corruption
of the bleached image (the combination of the original LQ
image and the synthesized bleach). The design of k could
effectively alleviate the corruption of bleached images.

D. Final Objective Function

In this section, we discuss the final objective function
adopted in our paper. Besides the proposed two above-
mentioned loss functions, we also choose the cross-entropy
loss Lce to optimize the Deepfake detection model. The final
loss function is described as:

L = Lrem + αLreg + γLce, (7)

where α and γ are hyper-parameters to balance the contri-
bution of the proposed three components. Considering the
imbalance between true negative and false positive samples,
we also conduct a balanced offset training strategy to mitigate
distribution differences between true negative and false posi-
tive samples in the wrongly classified examples. We set α = 1
and γ = 2 in our all experiments. More ablation studies about
the hyper-parameter selection will be included in Section IV-C.

IV. EXPERIMENTS

A. Experimental Setting

1) Datasets: To validate the universal adaptability of our
model, we conduct our experiments on the challenging Face-
Forensics++ [20] dataset. FaceForensics++ is the most widely
applied dataset in most Deepfake detection algorithms, which
contains 1,000 real videos collected from the Internet. Each
real one is manipulated by 4 forgery approaches: DeepFakes,
NeuralTexture [53], FaceSwap [54] and Face2Face [1], re-
spectively. There are three subversions of the FaceForensics++
dataset according to three compression levels: 1) Raw (original
quality), 2) HQ (quantization rate of 23), and 3) LQ (quanti-
zation rate of 40). We choose high-quality and low-quality
versions to perform cross-compression Deepfake detection.
For data split, we strictly follow the official train/val/test
split (720/140/140) to perform a fair comparison with other
methods.

2) Implement Details: For dataset pre-processing, we ex-
tract 300 random frames for each video for all training
datasets. And we keep the same sampling for testing datasets
to ensure a fair comparison. Following the experimental setting
of [32], we use a state-of-art face extractor RetinaFace [55]
on each extracted frame and save every aligned facial image as
the size of 299×299 which is the same as the setting in Face-
Forensics++ [20]. To simulate the real situation, we choose the
HQ (C23) version of the FaceForensics++ dataset to train the
classifier and then test the trained classifier on the LQ (C40)
version. We formulate all wrongly classified examples: FP
(false positive) and FN (false negative) respectively based on
the training set of the LQ data. After that, we randomly sample
the correctly classified data to formulate a balanced offset
training dataset for our bleach generator. We also combine
these samples as the training datasets for our bleach generator
and the parameters of the basic classifier are frozen during the
whole training process. For our bleach generator, we optimize
this module with Adam optimizer [56] with a learning rate of
0.0002 and the weight decay of 1e−8. We strictly follow the
official experimental setting of the adopted Deepfake detection
algorithms. All these experiments are mainly conducted on a
machine with 4 Geforce RTX 2080Ti GPUs.

3) Backbones: In our paper, we choose three widely
used Deepfake detection backbones (including Xception [19],
MesoInception4 [14] and F3-Net [11]) and two general
image classification backbones (including ResNet-50 and
EfficientNet-B4) to explore the effectiveness and generaliza-
tion ability of our approach.
• Xception [19]. We first adopt a widely used Xception for

the Deepfake detection, which is a DCNN architecture
pre-trained on ImageNet dataset [57]. The separable con-
volutions and the residual connections provide a strong
ability to achieve robust and accurate Deepfake detection.

• MesoInception4 [14]. The MesoInception4 is also
adopted in our experiments. Inspired by the inception
neural network, this method adopts two inception mod-
ules [58] and two traditional convolution modules to
boost the Deepfake detection accuracy.

• F3-Net [11]. Finally, a recent representative F3-Net uti-
lized frequency domain information to mine subtle ar-
tifacts and compression error features. Two complemen-
tary modules: frequency-aware decomposition (FAD) and
local frequency statistics (LFS) were introduced to de-
compose image components and local frequency domain
statistical information. Finally, the dual-stream network
features were fused by Mixblock. The FAD module
integrated the components of several frequency bands
to obtain a wider range of information. LFS adopted
the local frequency statistics to calculate the average
frequency response in patch regions to form a multi-
channel characteristic diagram.

• ResNet-50 [59] is a variant of the ResNet architecture,
a widely used network backbone in image classification,
object detection, and segmentation. The skip connections
introduced by the ResNet architecture allow the model to
bypass some of the layers in the network. This residual
learning helps to alleviate the vanishing gradient problem.
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TABLE III
EXPERIMENTAL RESULTS OF ACC. AND AUC UNDER VARIOUS FACE FORGERY SETTINGS: FACESWAP, FACE2FACE, DEEPFAKES AND NEURALTEXTURE.

ALL THESE EXPERIMENTS ARE CONDUCTED BY USING 300 FRAMES FOR EACH VIDEO.

RECG Backbone FaceSwap Face2Face DeepFakes NeuralTexture
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

× Xception [19] 70.95 84.14 52.86 75.38 86.96 93.94 62.99 72.41
X 79.62 87.24 67.30 82.26 86.87 94.28 67.94 75.05

× MesoInception4 [14] 57.99 71.39 50.37 60.21 68.24 84.24 63.45 68.81
X 60.64 71.46 51.44 66.77 71.71 84.60 64.08 69.31

× F3-Net [11] 71.35 84.93 51.62 61.41 86.76 94.17 65.01 73.52
X 77.55 86.27 59.82 65.96 87.63 93.60 71.89 78.25

× ResNet-50 [59] 73.15 86.07 56.60 78.09 87.54 95.26 64.09 74.70
X 80.47 88.49 66.65 79.98 88.31 95.29 69.69 76.49

× EfficientNet-B4 [60] 74.47 85.26 52.10 63.87 87.05 95.49 65.60 76.73
X 81.32 89.72 74.54 82.66 88.93 96.17 71.16 79.03

ResNet-50 also includes batch normalization and ReLU
activation functions, which help to improve the speed and
accuracy of the model.

• EfficientNet-B4 [60] is a widely-used neural network
architecture designed to be both accurate and computa-
tionally efficient. It is a variant of the EfficientNet family
of models that have achieved state-of-the-art performance
on several computer vision tasks. EfficientNet-B4 opti-
mized the network architecture for both depth, width, and
resolution simultaneously and adopted a novel inverted
bottleneck block to improve performance. These designs
allow the network to achieve high accuracy while still
being computationally efficient.

4) Evaluation Metrics: We report the classification accu-
racy (denoted as Acc.) and the area under the curve (AUC)
on the low-quality version of the FaceForensics++ dataset. The
classification/identification accuracy is the significant metric in
most of the Deepfake detection tasks, directly measuring if the
Deepfake detection model succeeds in accurately identifying
the modified images. AUC is also proposed as the evaluation
metric for different Deepfake detection experiments. We also
report the number of false negative (FN) and false positive (FP)
examples in our ablation studies to show the effectiveness of
the proposed method.

B. Quantitative Comparison

1) FaceSwap and Face2Face: We conduct our experiments
on two sub-forgery sets of the FaceForensics++ dataset. We
first analyze the difference between 2 FaceForensics++ sub-
dataset from the distribution of feature representation outputs.
As shown in Fig. 4, in the vicinity of the origin (yellow
rectangle area), the bias of distribution between failed and
correct examples can be observed. The blue point cluster
more densely, whereas the red point is sparse around the
original point. Face2Face has a more complicated distribution
of feature representations. Both positive and negative examples
arrange densely around the original point.
Xception. XceptionNet [19] is a traditional convolutional
neural network with separate convolutions and residual con-
nections. Xception has shown its strong ability on performing
robust and accurate face recognition and becomes a wildly

FaceSwap Face2Face

FP

TP

FN

TN

Blue : Positive       Red : Negative 

(a) (b)

(c) (d)

FP

TP

TN

FN

Fig. 4. The representation distribution of the images generated by FaceSwap
and Face2Face based on the Deepfake detection backbone Xception. The
red and blue points indicate the negatively predicted examples and positively
predicted examples respectively. The points in the second and fourth quadrant
shown in (a) and (b) represent FP and TP samples. The points in the second
and fourth quadrant shown in (c) and (d) represent FN and TN samples.
The region covered by the yellow dotted line describes the scenario in
which a large number of TN samples are misclassified with high confidence.
Almost all of the negative examples generated by Face2Face are misclassified
with higher confidence, which demonstrates that the Xception classifier is
extremely fragile when dealing with the highly compressed samples from the
Face2Face dataset.

used Deepfake detection algorithm. The batch size is set
to 14 during the training procedure under this setting. The
quantitative results are reported in Table III. As observed, the
proposed method can heavily promote the Deepfake detection
accuracy under compression without retraining the whole
network. With the effective former bleaching module, the
latter Deepfake detection model could discriminate the tiny
differences between the real and forgery samples.
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FP+FN
TP+TN

FP+FN
TP+TN

Xception Xception+Ours

Fig. 5. The t-SNE visualization of feature representation φ at the last layer.
The proposed method could centralize the FP and FN samples, which also
supports that our method has a strong ability to bleach the wrongly classified
samples.

We first analyze the robustness of the existing Deepfake
detection algorithm Xception under compression. We report
the representation distribution of the images generated by
FaceSwap and Face2Face based on the Deepfake detection
model Xception in Fig. 4, which represents a low robustness to
the compression. For further explanation, we also provide the
t-SNE visualization of the distribution of the representations
from the last layer of Xception to show how our method
contributes to improving the recognition performance. The
distribution visualization is illustrated in Fig. 5. The proposed
method could get a more reasonable distribution.
MesoInception4. We then perform experiments based on
MesoInception4, which is another representative Deepfake de-
tection network architecture. The dimension of the last layer of
MesoInception4 is only 16. We introduced two convolutional
modules to increase the dimension of the representations for
stacking more information. The output after the two convo-
lutional layers is expanded to 512 and then is reshaped to
4 × 4 × 32, which is regarded as the input of DCGAN. The
experimental results are also reported in Table III. The perfor-
mance gain of the proposed method based on MesoInception4
is smaller than adopting the Xception as the backbone. We
attribute this to the reason that the information contained in
the 16-dimensional feature representation in MesoInception4
is limited. It is difficult to generate a 299×299×3 bleach from
the small size feature representation. In other words, it is also
challenging and difficult to generate and model the information
difference between the original and compressed Deepfake
images from such abstract and limited feature representation.
F3-Net. We combine the proposed method with F3-Net and
set the batch size to 16 on all datasets. Under this setting, F3-
Net did not normalize the output of the last layer. To avoid the
collapse of the model, we empirically multiply the output with
the additional hyper-parameter s = 0.01 to generate a more
reasonable bleach. We will quantitatively and qualitatively
discuss the influence of choosing different values of s in
Section IV-C1. As reported in Table III, when s = 0.01, we
can improve the detection accuracy from 51.62% to 59.82%
on the challenging Face2Face dataset, and from 71.35% to
77.55% on FaceSwap images. Meanwhile, the AUC scores
are also improved on both two forgery methods of compressed
data.
ResNet-50 and EfficientNet-B4. Two widely used image

classification backbones are also included. Following the same
experimental setting, the quantitative experimental results are
reported in Table III. The proposed method could achieve a
very large performance improvement based on both ResNet-50
and EfficientNet-B4 backbones on the challenging Face2Face
setting: from 56.60% to 66.65% accuracy improvement for
ResNet-50 and from 52.10% to 74.54% accuracy improvement
for EfficientNet-B4. The experimental results demonstrate that
the proposed method is a general framework, which could lead
to performance gains based on various network backbones.
The proposed method works better performance gains when it
is combined with compact network backbones (e.g., Xception,
ResNet-50 and EfficientNet-B4), since these designed network
backbones could yield more compact feature representations
that could store more information from the Deepfake images,
leading to better performance.

2) DeepFakes and NeuralTexture: In this section, we pro-
vide more experimental results to demonstrate the effective-
ness of the proposed method on the other two types of forgery
approaches: DeepFakes and NeuralTexture.
DeepFakes. We first evaluate the performance of the proposed
method on the images generated by the DeepFakes algo-
rithms. Similarly, we choose the same five network backbones:
MesoInception4 [14], Xception [19], F3-Net [11], ResNet-
50 [59] and EfficientNet-B4 [60] in our experiments. We report
all the quantitative results in Table III. The proposed method
is plug-and-play and could results in performance gains on
both accuracy and AUC scores based on various network
backbones.
NeuralTexture. NeuralTexture [53] is an advanced face
forgery approach compared with the other three methods. It is
much more difficult to detect the face forgery videos generated
by NeuralTexture since this method intentionally introduced
the subtle small-scale artifacts, which are inconspicuous to
both models and human beings. With the compression, these
subtle visual artifacts are further weakened, making the face
forgery detection problem extremely challenging. The pro-
posed method can improve both Acc. and AUC scores based
on all three backbones, which indicates that the proposed
method is a general and effective module for various Deepfake
detection algorithms.

In summary, even though the proposed method could im-
prove the overall detection accuracy in most cases, we still face
some challenges and there is a lot of room for us to improve
the Deepfake detection accuracy. For instance, to improve
the overall detection accuracy, the model tends to reduce the
FP samples while failing to maintain the detection efficiency
of false negative samples. We attribute this phenomenon to
the reason that the Deepfake detection algorithms cannot
distinguish the false positive and false negative samples in the
feature space. When false positive and false negative samples
are mixed very close, the model would inevitably misclassify
the true negative into false negative while reducing the FP
samples. This situation goes worse when the false positive
and false negative samples are highly imbalanced.

Finally, to further compare the effectiveness of the proposed
method with the existing state-of-the-art Deepfake detection
algorithms, we follow the experimental setting of [44] and
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TABLE IV
THE EXPERIMENTAL RESULT COMPARISON BETWEEN OUR METHOD AND

PREVIOUS SOTA METHODS.

Dataset Method FaceForensics++ (C40) Acc.

Fa
ce

Sw
ap Rossler et al. [20] 88.09

Dogonadze et al. [61] 90.02
F3-Net [11] 89.58

Ours 89.56

Fa
ce

2F
ac

e Rossler et al. [20] 80.21
Dogonadze et al. [61] 83.44

F3-Net [11] 81.48
Ours 82.23

D
ee

pF
ak

e Rossler et al. [20] 92.43
Dogonadze et al. [61] 93.97

F3-Net [11] 93.06
Ours 92.38

N
eu

ra
lT

ex
. Rossler et al. [20] 56.75

Dogonadze et al. [61] 61.12
F3-Net [11] 61.95

Ours 75.96

Original image Generated bleach Bleached image

Fig. 6. The original images, the synthesized bleach and the corresponding
corrupted bleached images after adding the generated bleach into the original
images.

report the experimental results in Table IV. We compare the
proposed method with the recently advanced algorithms. As
reported, the proposed method could achieve much better
results than the existing algorithms on the most challenging
NeuralTexture dataset. Under other settings, the proposed
method could also achieve comparable performance with other
algorithms.

C. Ablation Studies

1) Selection of s in F3-Net: We discuss the influence
of the scale of the generated bleach based on F3-Net. The
comparisons between the original images, the synthesized
bleach and the bleached images are illustrated in Fig. 6. We
observe that the image output will be corrupted if we directly
add the bleach to the compressed image. Thus, to avoid this,
we design a beach scale s to project the generated bleach into
an appropriate scale. We conduct extensive experiments by
using different values of s and report the quantitative results in

TABLE V
THE EXPERIMENTAL RESULTS OF USING DIFFERENT VALUES OF SCALE s

BASED ON F3-NET.

RECG Backbone FaceSwap
Acc. AUC

s = 1

F3-Net [11]

54.16 57.79
s = 0.1 71.83 80.46
s = 0.001 77.41 86.19
s = 0.01 77.55 86.27

TABLE VI
THE EXPERIMENTAL RESULTS OF USING DIFFERENT VALUES OF α AND λ

BASED ON VARIOUS BACKBONES.

RECG Backbone FaceSwap
ACC AUC

α = 1, λ = 10
Xception [19]

77.18 85.27
α = 1, λ = 5 78.86 88.16
α = 1, λ = 2 79.62 87.24

α = 1, λ = 10
MesoInception4 [14]

57.62 70.19
α = 1, λ = 5 59.27 70.01
α = 1, λ = 2 60.64 71.46

α = 1, λ = 10
F3-Net [11]

76.73 85.89
α = 1, λ = 5 77.14 86.32
α = 1, λ = 2 77.55 86.27

Table V. When s = 1.0, there is a huge performance drop since
the uncontrolled bleach contributes to the Deepfake detection
model most, which results in the classifier cannot distinguish
between positive and negative samples. Among all the settings,
our method has achieved the best performance when s = 0.01.

2) Hyper-parameter Selection: We have conducted exper-
iments of choosing different values of α and λ to obtain the
optimal combinations of the hyper-parameters and we report
the experimental results in Table VI. As illustrated in Table VI,
we can achieve the best results when α = 1, λ = 2.

3) Effectiveness of Lrem: To validate the effectiveness of
the proposed compression remedy loss, we design experiments
to measure how Lrem affects the accuracy and the number
of failed examples. We perform experiments on the FaceSwap
dataset and keep other experimental settings the same to make
a fair comparison. The results on the FaceSwap dataset are
reported in Table VII. The results present the improvement
of identification accuracy and AUC based on the backbone
Xception on the FaceSwap dataset.

4) Effectiveness of Balanced Offset Training Strategy:
As above-mentioned, the proposed balanced offset training
strategy plays an important role to alleviate the imbalance
between false positives and false negatives. To demonstrate
this, we evaluate the proposed balanced offset training on the
FaceSwap dataset. We compare the experimental results of
using different values (m = −0.7, 0,+0.7 respectively) for our

TABLE VII
THE EFFECTIVENESS OF THE PROPOSED COMPRESSION REMEDY LOSS

Lrem .

Lrem Backbone FaceSwap
Acc. AUC FP FN

× Xception [19] 77.55 86.46 14,465 4,396
X 79.62 87.24 10,247 6,873
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TABLE VIII
THE EFFECTIVENESS OF THE PROPOSED BALANCED OFFSET TRAINING

STRATEGY. WE CAN MAKE THE FN AND FP SAMPLES MORE BALANCED,
WHICH CAN ALLEVIATE THE INFLUENCE OF THE DATA IMBALANCE.

RECG Backbone FaceSwap
Acc. FP FN FN/FP

m = −0.7
Xception [19]

78.52 13,305 4,735 0.356
m = 0 78.93 12,331 5,372 0.436
m = 0.7 79.62 10,247 6,873 0.671

TABLE IX
THE EFFECTIVENESS OF THE PROPOSED Lreg LOSS. B/I INDICATES THE

PIXEL-LEVEL RATIO OF THE BLEACHED IMAGE OVER THE ORIGINAL
IMAGE. IF WE SET NO CONSTRAINT FOR THE REGULARIZATION LOSS, THE

MODEL WOULD COLLAPSE AND FAIL TO ACHIEVE MEANINGFUL
BLEACHING.

Lreg Backbone FaceSwap
Acc. FP FN B/I

× Xception [19] 50.02 240 41,740 1.8211
X 79.62 10,247 6,873 0.0147

balanced offset training strategy and the results are reported
in Table VIII. The imbalance between false positives and false
negatives is reduced by the proposed balanced offset training
strategy. The proposed method provides a feasible solution
for the extreme circumstances when the model cannot learn a
bleached image due to a few false negative or false positive
samples.

5) Effectiveness of Lreg: The regularization loss is a
straightforward approach to provide the constraint for generat-
ing the pixel-level outputs to balance the ability of bleaching
and promote the overall identification accuracy. A not-limited
generated bleach will lead to the corruption of the bleached
image. In detail, if false negative examples are dominant
among all the training samples, the model will learn a large
bleach for recovering the false negatives to true negatives with
the assistance of classification loss. However, this phenomenon
will bring about a rise of false positives since the model has
resulted in the same influence to true positives. As discussed
in previous work [62]–[65], even a small scale of noise can
disrupt the classifier. In our experiments, we observe that the
normalized bleach can effectively recover the information loss
caused by compression. Hence, we set k = 50 in Equ 6 and
achieve better performance as shown in Table IX. Besides, we
also explored how the regularization loss affects the training
process on the FaceSwap dataset. As shown in Fig. 7, the
proposed Lreg could help preserve the stability of the training
and promote identification accuracy.

6) Compression-agnostic: Furthermore, we also consider
the utility of our method in the real-world setting. There are
various formats of compressions during the transmission pro-
cedures. We have designed experiments on cross-compression
tests. In detail, we adopt the trained bleach generator based
on the data with a specific compression level and perform
the Deepfake detection with another compression scale. Under
this setting, we adopt low-quality data for training and high-
quality data for testing. The quantitative results are reported
in Table X. Please note, during the testing procedure, we do

0 50 100 150 200
Training curves (Round)
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Fig. 7. The training curves of 1) using the proposed Lreg and 2) not using
the Lreg . Each round contains 20 iterations. As illustrated, the proposed
Lreg can stabilize the training procedure and enhance the Deepfake detection
performance.

TABLE X
THE EXPERIMENTAL RESULTS OF OUR METHOD UNDER THE

COMPRESSION-AGNOSTIC SETTING.

RECG Training data Backbone C40
Acc. AUC

× C23 Xception [19] 70.95 81.73
X 72.36 83.27

× C23 MesoInception4 [14] 57.99 68.83
X 59.05 72.56

× C23 F3-Net [11] 71.35 85.61
X 71.84 86.35

not retrain our bleach generator. We adopt various backbones
to conduct the corresponding experiments while other experi-
mental settings are the same. As reported, the proposed method
has resistance to various compressions.

D. Discussions

1) Generalization Ability: We have also explored the gen-
eralization ability to the unseen compressed Deepfake images
under the real-world setting. We first collect 360 Deepfake
and real images from the Internet and these images are unseen
for our trained Deepfake detection model. It is worth noting
that the trained Deepfake detection model is frozen and
without retraining during the inference stage. Furthermore,
we simulate the real-world compression by uploading all the
images to https://www.canva.cn/ for obtaining the compressed
images. Then we download the compressed Deepfake images
for testing. We provide the qualitative comparison between
without and with compression in Fig. 8. As illustrated, the
compression leads to the patch-like visual artifacts. Please
zoom in for checking a more detailed comparison. The pre-
trained Deepfake detection model only achieved 52.92% accu-
racy, which indicates that the model fully failed to detect the
Deepfake images under the compression setting. In contrast,
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the proposed method could achieve 71.31% accuracy even
without retraining (71.31 vs. 52.92). The proposed method
could achieve 18.4% accuracy improvement without retraining
and could effectively detect the Deepfake images under the
compression setting.

Original Compressed

Fig. 8. The compression leads to patch-like visual artifacts and leads to the
failure of the Deepfake detection. Best viewed in color.

2) Comparison with Previous Algorithms: We provide
more detailed discussions about the comparison between the
proposed method and existing Deepfake detection algorithms
under the compression setting. A direct quantitative compari-
son with the existing algorithms [44], [48], [49], [66], [67]
is illustrated in Table XI. The two stream algorithm [48]
could achieve the best results among all the methods. It
requires the paired HQ and LQ data for training and even
for evaluation. However, it is not impossible to access such
paired data for inference in real-world scenarios. Particularly,

1We follow the official construction of their provided codes https://github.
com/ahaliassos/LipForensics to conduct a fair comparison and report the
corresponding experimental results.

TABLE XI
ACCURACY COMPARISON WITH THE EXISTING DEEPFAKE DETECTION

ALGORITHMS UNDER COMPRESSION. † INDICATES THAT IT REQUIRES THE
PAIRED LQ-HQ DATA AS INPUT DURING BOTH THE TRAINING AND

INFERENCE STAGES. THE BEST RESULTS UNDER THE UNPAIRED SETTING
ARE IN BOLD. − INDICATES THAT THE RESULTS ARE NOT REPORTED.

Method FaceSwap Face2Face DeepFakes NeuralTexTure Average

Two stream† [48] 93.51 91.13 95.90 79.18 89.93
ADD† [44] 92.49 85.42 95.50 68.53 85.48

LipForensics1 [49] 73.71 67.91 63.70 65.50 67.71
AMTEN [66] - - - - 84.16
FTDN [67] - 83.19 83.55 - -
Ours 89.56 82.23 92.38 75.96 85.03

in most of the scenarios, we cannot obtain the original HQ
data. Furthermore, during the inference stage, we are not given
whether the input Deepfake images have been compressed.
We conduct the experiments based on the same experimental
setting and report the corresponding experimental results in
Table XI. ADD [44] also requires the paired LQ-HQ data for
training. At the inference procedure, the model should also
know whether the Deepfake images are compressed and feed
the input Deepfake images into the corresponding branch. As
reported, the proposed method could achieve a competitive
performance compared with the existing specially designed
Deepfake detection algorithms under compression (especially,
75.96% accuracy under the challenging NeuralTexture setting).
We argue that our method has two main advantages over the
previous Deepfake detection algorithms under compression:
• The proposed method does not require paired LQ-HQ

data for training. In the real-world setting, we usually do
not have such paired data and only have the compressed
LQ data. The original HQ data are not available for
training.

• The proposed method is compression-agnostic. The pre-
vious algorithms should know whether the input Deep-
fake images are compressed in advance and then feed the
input Deepfake images to the corresponding branch.

The proposed method could work effectively under a more
practical and generalized setting. Besides, our method has
also achieved various degrees of performance gains based on
different network backbones as a plug-and-play module. To
further demonstrate the effectiveness of the proposed method,
we have also included three recent works (LipForensics [49],
AMTEN [66] and FTDN [67]) for comparison, which are
specially designed to perform Deepfake detection under the
compression setting without using the paired LQ-HQ data
for training. As reported, the proposed method could achieve
the best Deepfake detection results among all these unpaired
Deepfake detection algorithms.

V. CONCLUSION

In this study, we introduced a straightforward and efficient
bleach module that can be seamlessly integrated with existing
Deepfake detection algorithms to enhance the detection of
face forgery under compression. Utilizing the feature rep-
resentations generated by a pre-trained Deepfake detection
model, our proposed bleach generator generates a bleach that
can be added to the original Deepfake images, resulting in
a bleached image that can be accurately identified by the
Deepfake detection model. The core concept of our approach
is to treat compression as a specific type of attack, and we
employ a simple DCGAN architecture to generate the com-
pression remedy. To address misclassifications caused by the
compressed Deepfake images, we design two loss functions
that modify the feature distribution in the feature space. We
conduct extensive evaluations on four commonly used face
forgery detection datasets, employing five different network
backbones. The results demonstrate noticeable performance
improvements compared to state-of-the-art detection models,
validating the effectiveness of our proposed bleach design.
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Additionally, we conduct comprehensive experiments to assess
the effectiveness of each component of our proposed method.
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