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Abstract

There has been an increased interest in high-level image-to-image translation to
achieve semantic matching. Through a powerful translation model, we can effi-
ciently synthesize high-quality images with diverse appearances while retaining
semantic matching. In this paper, we address an imbalanced learning problem
using a cross-species image-to-image translation. We aim to perform the data
augmentation through the image translation to boost the performance of imbal-
anced learning. It requires the model’s strong ability to perform a biomorphic
transformation on a semantic level. To tackle this, we propose a novel, simple,
yet effective and efficient structure of Multi-Branch Discriminator (MBD) based
on Generative Adversarial Networks (GANs). We show the effectiveness of the
proposed MBD through theoretical analysis as well as empirical evaluation. We
provide theoretical proof of why the proposed MBD is an effective and optimal
case to have the best performance. Comprehensive experiments on various cross-
species image translation tasks illustrate that our MBD can dramatically improve
the performance of popular GANs with state-of-the-art results in terms of both
objective and subjective assessments. Complete downstream image recognition
evaluations at a few-shot setting have also been conducted to show that the pro-
posed method can effectively boost the performance of imbalanced learning.
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1. Introduction

A common phenomenon in our daily life is that the examples from some
species are significantly more than other species. Imbalanced datasets bring a
challenge to most of the existing machine learning methods. Without interven-
tion, many machine learning approaches tend to focus on the majority group5

while omit the minority groups. However, in many cases, the minority groups
contain valuable information. Imbalanced datasets are very common in nature.
For example, the number of pandas is much fewer than grizzly bear. Despite
deep learning based approaches made a great progress in many computer vision
fields[40, 78, 60, 14], the works on image-to-image based imbalanced learning10

are still quite limited.
The development of generative adversarial networks (GANs) brings new op-

portunities for the imbalanced learning challenge. GAN, which has been devel-
oped by Goodfellowet al.[21], is a proven as one powerful framework to handle
various computer vision tasks [24], such as generating pictures from text descrip-15

tions [53, 76], converting video from still images [10], increasing resolution of im-
ages [36], editing and translating images/videos [75, 28, 81, 74, 66, 77, 63, 37, 27,
67]. A plausible GAN based solution for imbalanced learning is to take advantage
of the diversity from rich species to generate reasonable samples for the rare cate-
gories to reduce the imbalanced ratio of the dataset. In particular, as an important20

and applicable topic in computer vision, GAN-based image-to-image translation
has attracted more and more attentions [26]. Many extensions of the GAN [34]
have focused on how to enhance the generation and synthesis ability to obtain bet-
ter image translation performance by including new loss functions [3, 46], more
complex architectures [79], as well as multiple networks [16, 81, 32, 72]. Some re-25

cent works [27, 37, 38, 20] started to address the issue of animal image-to-image
translation tasks, such as cat↔dog and cat↔leopard. However, the mentioned
translation mainly focuses on the pose matching of similar species while can-
not work on further complex semantic matching situations within farther species
(please see Fig. 1 for reference). The position, number and pose matching may30

bring additional diversity rather than conventional data augmentation (e.g. rota-
tion, flipping or cropping).

We believe that the cross-species image-to-image translation with a seman-
tic matching is a tough but meaningful work. In technical point of view, cross-
species image-to-image translation tasks are extremely challenging, because such35
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tasks requires powerful models to understand the semantic content representa-
tion of each image. For the imbalanced image datasets including at least one
dominant species and one rare species, we can boost the recognition performance
by translating images from the dominant species to the rare specie to perform
instance-level data augmentation. To achieve this, we propose a novel cross-40

species image-to-image translation, and conduct a semantic matching between
two or more species during the translation. Through the image translation, we can
increase the diversity of the rare species even at the imbalanced setting. Specif-
ically, we retain the pose, position, number and other semantic features during
a cross-species translation to enrich the rare specie. Our goal is to handle the45

inter-species similarities and intra-species differences at the same time, which
requires better semantic understanding. However, due to the high requirement of
semantic mapping, most conventional GANs ineffectively and inefficiently handle
cross-species image translation [81]. Current studies demonstrate that an ensem-
ble discriminator architecture like multiple parallel discriminators or multi-scale50

discriminator, is helpful to GANs for improving and stabilizing the performance
of image generation [16, 50, 22, 2] as well as translation [25, 66, 27]. In our
work, we consider that the validity of the ensemble discriminator mainly benefits
from the boosting mechanism [30], aiming to construct a strong learner based
on many weak learners [47, 55]. Inspired by this idea, we propose to break55

a common strong discriminator into multiple smaller ones (branches) as weak
learners, named Multi-Branch Discriminator (MBD, please check section. 3.1 for
detail), for taking advantage of ensemble discriminator while reducing the com-
plexity of architecture as well as computation. As shown in Fig. 2, a simple and
powerful image-to-image translation model is designed for high-level image-to-60

image translation (e.g., cross-species) and relief the imbalanced learning problem
by translating images from a dominant specie to a rare specie.

Our contribution is three-fold: At first, we thoroughly investigate current dif-
ferent structures of GAN ensemble discriminator and present our novel MBD for
boosting GANs. Second, we theoretically and empirically study that the MBD65

branch number should correlate with the total channel number while channel num-
ber per branch should not be too large or too small (the same for each discrimi-
nator), since too many channels make information redundant, while too less may
lead to insufficient knowledge for translation. Interestingly, we find that multiple
branches of MBD essentially bootstrap for task allocation on the semantic level70

during translation to tackle high-level (such as cross-species) image translation
well even with limited training samples (few-shot setting), while increasing the
diversity of the rare species that benefits the classification process on an imbal-
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Fig. 1. Semantic level matching phenomenon including position matching, number matching and
pose matching on cross-species image-to-image translation tasks by our proposed MBD method.

anced dataset.

2. Related works75

2.1. Imbalanced learning
In past two decades, machine learning based imbalanced learning has been

studied extensively. Methods can be crudely split into two groups: algorithm-
level methods and data-level techniques. Algorithm-level methods try to address
the imbalance problems by enhancing the importance of the minority categories80

on algorithm-level. Commonly used methods like modifying the cost functions,
assigning penalties or weights for different categories try to force the model re-
duce the impact of imbalanced distribution. Wang et al. [65] presented Mean false
error (MFE) for imbalanced classification tasks using deep neural networks. Lin
et al. [39] proposed focal loss which can effectively addresses the extreme class85

imbalance in object detection tasks. Researchers soon found that the focal loss
is also efficient for common image classification tasks [49]. Besides, there exists
various kinds of cost-sensitive models such like CSDNN [64], CoSen- CNN [31],
CSDBN-DE [73], etc. These models consider cost-sensitive learning to update
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Fig. 2. Cross-species image-to-image translation for imbalanced learning.

model parameters. Generally, the cost-sensitive methods can significantly im-90

prove the imbalanced training process if a suitable cost/weight matrix is chosen.
However, people may need experience to obtain an effective cost/weight matrix.

Instead of changing the algorithms, data-level techniques aim to modify the
number of training data directly to reduce the imbalanced ratio. Over-sampling
and under-sampling are two main strategies of data-level techniques. These meth-95

ods try to reduce the imbalanced ratio among different categories on data-level
by reducing the number of a majority category (e.g. random under-sampling)
or increasing the number of a rare category (e.g. random over-sampling)[62].
Multiple data-level approaches are developed based on intelligent under/over-
sampling [29]. However, some valuable information may also be discarded during100

the under-sampling process. The main weakness of over-sampling is that the in-
creased samples will also increase the training time and has also been proved as a
cause to over-fitting [11]. Recently, the development of generative models (such
as GANs) brings a new direction to address the imbalance problems on data-level.
Unlike over-sampling approaches, GANs based model can generate realistic im-105

age samples which are similar but different from the source samples. The adver-
sarial training process make the generated samples robust against over-fitting. In
this paper, we aim to develop a novel data-level framework for imbalanced learn-
ing based on generative adversarial learning.
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2.2. Image-to-image translation110

In general, image-to-image translation describes a task to convert an image
of one source domain to an image in the target domain. Many typical computer
vision topics can be summarized as image-to-image translation tasks [26], includ-
ing semantic segmentation [42, 71], image restoration and enhancement [45, 75],
image editing and in-painting [19, 52, 70, 5], super resolution [36, 12, 58]. In115

some early years, these tasks have been handled with various types of artificial
neural network models [33, 54]. Due to the success of extensions on a condi-
tional GAN [48], Isola et al. [28] developed an important branch of GAN called
pix2pix to apply adversarial learning to image-to-image translation. Although
pix2pix can handle general image-to-image tasks, it adopted a supervised train-120

ing manner that always requires paired images. To overcome this shortage, Zhu
et al. [81] proposed another variation called CycleGAN to extend GAN-based
image-to-image translation to unpaired datasets with two generators (forward and
backward). Soon after, Choi et al. [13] further extended this idea and proposed
StarGAN to translate images among multiple domains with only one single gen-125

erator and discriminator.
Along with the development of GAN techniques, many researchers have cho-

sen unpaired training datasets for unpaired image-to-image translation [32, 72,
81, 82, 13, 27, 37]. However, cross-domain (e.g., cross-species) translation tasks,
are still considered to be extremely difficult [59, 43]. A recent study called MU-130

NIT [27] adopted an unsupervised multi-modal structure to translate styles while
preserving the contents to generate the target images. The concurrent DRIT [37]
proposed a disentangled representation framework to generate diverse outputs
with unpaired training data. Then, GANimorph [20] presented another unpaired
image-to-image translation framework for shape deformation based on a discrim-135

inator with dilated convolutions. Besides, Twin-GAN [38] used a progressively
growing skip connected encoder-generator structure for human-anime character
translation. However, most of those works mainly addressed the pose matching
situation of similar species, by using their specific-designed frameworks, which
are difficult for reuse and recycle. In our work, we primarily target to take this140

one step further to study the challenging issue of cross-species image-to-image
translation, which requires semantic level transformation. Also, we aim to build
a simple and flexible yet effective structure based on current frameworks to gain
the performance.
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2.3. Ensemble discriminator GAN145

Recently, many works have demonstrated that the ability of image generation
and synthesis of GANs can benefit a lot from the design of ensemble discrimi-
nator, i.e., multi-discriminator or multi-scale discriminator. GMAN [16] first ex-
tended GANs to multiple discriminators for high-quality image generation with
fast and stable convergence. Multi-discriminator GAN (MD-GAN) [22] showed150

a learning procedure for GANs with multiple discriminators on the distributed
datasets. MD-CycleGAN [25], which is an extension of CycleGAN [81], was
proposed to enhance the speech domain adaption with an architecture of multiple
and independent discriminators. Meanwhile, pix2pixHD [66] and MUNIT [27]
adopted multi-scale discriminator structure for high-resolution paired and multi-155

modal unpaired image-to-image translation respectively. Besides, the works of
Durugkar et al. [16], Doan et al.[15] and Albuquerque et al. [2] studied that the
multiple discriminator setting can be helpful to stabilize GAN training.

We consider that the performance gain of ensemble discriminator GANs owes
to the inside implicit boosting strategy. Boosting is an important branch of ma-160

chine learning algorithms that construct a strong learner based on many weak
learners [30, 55, 80]. For multi-discriminator GANs, the multiple and indepen-
dent discriminators can be regarded as multiple weak learners, trying to construct
a strong learner as well. In this paper, we empirically study the power of differ-
ent types of multiple discriminators, which only have limited power on image-165

to-image translation tasks (please see Section 4.3.2 for reference). Unlike their
methods, we present a novel ensemble discriminator framework by decomposing
a common discriminator into multiple branches using channels as weak learners
which are optimized independently (please see Fig. 3 for comparison). Com-
prehensive experiments demonstrate that this multi-branch discriminator outper-170

forms the multi-discriminator structure on cross-species image-to-image transla-
tion tasks. It takes the advantage of ensemble discriminator while reducing the
complexity of architecture and computation. There exists a boosting GAN, called
AdaGAN [61], which is similar to AdaBoost [18]. It learns a weak GAN for
each iteration concerning a re-weighted data distribution, rather we consider the175

boosting inside a discriminator of one GAN.

3. GAN-MBD

In this paper, we address one challenging cross-species image-to-image trans-
lation task. Our goal is to translate the images of one source species to target
species to increase the diversity of the target category and relief the recognition180
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Fig. 3. Structure comparison of different types of GAN ensemble discriminator D. (a) SD: single
discriminator [21]; (b) MSD: multi-scale discriminator [16]; (c) MD: multiple discriminators [27];
(d) SBD: single branch discriminator, i.e., single discriminator with fewer channels; (e) MBD: our
multi-branch discriminator. In this figure, for the “multiple” cases, MSD, MD and MBD, we present
“2” for example illustration; for the SBD case, we present “ 1

2” channels for example illustration.

stress from an imbalanced dataset. Generally, the major challenge comes from
the distance between species, e.g., the task of flower↔human translation is harder
than the task of cat↔dog translation. However, some other factors can also affect
the translation difficulty, such as the position or number of species displayed in
the image (please refer to Fig. 1). To meet the challenge, we develop efficient gen-185

erative adversarial network of Multi-Branch Discriminator (GAN-MBD), which
can handle the cross-species image-to-image tasks.

3.1. Multi-Branch Discriminator
Suppose a common discriminator has M channels for the ith layer, Our dis-

criminator with N branches has M/N channels for each branch of the ith layer.190

Each branch that can be considered as a weak discriminator works independently.
Notably, the number of parameters of a discriminator with two branches would
only be half of a common discriminator (please refer to Table 1). Theoretically,
we can obtain fewer parameters if we use more branches.

Fig. 3 shows the structure comparison of different types of the current GAN195

ensemble discriminator with our multi-branch discriminator. It can be seen that,
• Compared to the structure of multi-scale and multiple discriminator (MSD and
MD), our multi-branch discriminator (MBD) structure is lightweight and easy
to use. Besides, the optimization for our every branch of the discriminator
is independent while the multiple discriminators are usually optimized to-200

gether [66, 27, 22]. Some works [16, 50] also used independent optimization
for multiple discriminators on image generation, but the generated images are
restricted to low resolution and have obvious artifacts. Recent literature has
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addressed the issue of multi-discriminator training from the view of multi-
ple random projections [50] and multi-objective optimization [2], further con-205

firming that the multi-discriminator setting is helpful to stabilize and optimize
GANs. Our study indicates that independent optimization for MBD is bet-
ter than joint training and good enough for challenging cross-species image
translation tasks (please see Section 4.3.2 for details).
• Compared to single discriminator with fewer channels (we describe this case210

as SBD that means single branch discriminator), our MBD can “understand”
the discriminative task better, due to more information stored in more chan-
nels. This ensures each branch of discriminator is trained in charge of one
sub-task being as a weak discriminator. Our detailed study in Section 4.3.2
also demonstrates that multiple branches of discriminator do act as weak dis-215

criminators for sub-tasks of translation and constitute one strong discriminator
for the whole image-to-image translation.

The overall structure of our MBD takes advantage of both performance of multi-
discriminator (MSD and MD) and lightweight of single-discriminator (SD and SBD).
Please see Section 4.3.2 for detailed empirical comparison and analysis.220

3.2. The variance of multi-branch regression
In this part, we will discuss the error variance between a multi-branch and a

single-branch architecture. Let x and y denote the input and output images, re-
spectively. The adversarial loss function of a common image-to-image translation
model can be written as follows:

L(G,D) = Ey∼pdata(y) [logD (y)]

+Ex∼pdata(x) [log(1−D(x,G(x))]
(1)

To handle both two-species and multi-species image-to-image translation, each
branch should be able to distinguish two aspects. The first is to decide whether
the current image is real or synthesized. Other parallel task is to judge the image
category. The average output of all branches is the final result of the discriminator.
Thus, the loss function of MBD model is:

L(G,D) =
1

N

∑N
k {Ey∼Pdata(y) [logDk(y)]+

Ex∼Pdata(x) [log(1−Dk(G(x))]}+ Lc,
(2)

where x denotes the original real sample, y means the target real sample, Di is the
ith branch of discriminatorD,N is the number of branches, and Lc is the category
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classification loss which can be written below:

Lc =
1

N

∑N
i {Ey,c[− logDc,i(c|y)]+

Ex,c[− logDc,i(c|G(x)]},
(3)

where the first term and the second term denote the classification loss for real
samples and fake samples respectively, c represents the label, and Dc,i means the
category identification task for the ith branch.

Let ei be the estimation error of the branch i. We assume ei ∼ N(µ, σ2) is225

Gaussian distributed and the correlation coefficient between the output of branch i
and j is ρij . Suppose each branch has the same power, we can obtain the variance
of a multi branch architecture as follows:

Proposition 3.1. The variance of multi branch estimation Var( 1
N

∑N
i=1 ei) has

the following property:

1

N
σ2 ≤ Var(

1

N

N∑
i=1

ei) ≤ σ2

Proof 3.1.

Var(
1

N

N∑
i=1

ei) = Var(
N∑
i=1

1

N
ei) (4)

= Cov(
N∑
i=1

1

N
ei,

N∑
i=1

1

N
ej) (5)

=
N∑
i=1

(
1

N
)2Var(ei) + 2

N∑
i,j=1;j 6=i

ρij
1

N

√
Var(ei)

1

N

√
Var(ej)

(6)

=
1

N
σ2 + 2

N∑
i,j=1;j 6=i

ρij
1

N2
σ2 (7)

=
1

N
σ2 +N(N − 1)ρij

1

N2
σ2 (8)

=
1

N
σ2 + ρij(1−

1

N
)σ2 (9)
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Because 0 ≤ ρij ≤ 1, we can derive

1

N
σ2 ≤ Var(

1

N

N∑
i=1

ei) ≤ σ2.

We can achieve the minimum error 1
N
σ2 while ρij = 0, which means that each

branch plays independently. In this case, larger N implies smaller error. On the230

contrary, we will obtain the maximum error σ2 if ρij = 1, which means all the
branches are in perfect correlation. In this situation, there will be no difference
between N branches and one branch.

4. Experimental comparison

4.1. Datasets235

Cat2dog [37] includes 871 cat and 1364 dog cropped images in total. We inherit
this dataset following the same data split for training and testing with the ratio of
771:100 for cat and 1264:100 for dog, respectively.
102Flowers [51] contains 102 different categories of flowers. We choose five
categories: grape hyacinth, water lily, rose, thorn apple, and hibiscus, with 704240

images for training and 174 images for testing.
CelebA [41] is a large-scale face attributes dataset with more than 200K images.
In our experiments, to focus on the face while translation, we randomly select and
crop 801 facial images, and split with 695 for training and 106 for testing.
Dogs vs. Cats | Kaggle [17] includes 25,000 dog and cat images captured in245

the wild, which is more challenging than Cat2dog. We randomly select 627 cat
images from this dataset with 526 and 101 for training and testing respectively, to
explore the potential of our method on image translation in the wild.
LFW [35] contains more than 13,000 images with labeled faces in the wild. Com-
pared to CelebA, LFW possesses more poses under more complex conditions,250

such as two people in one image. We randomly choose 1002 images from this
dataset for the image translation in the wild, among which 804 for training and
198 for testing.
ODIR5K [1] contains fundus photographs of both the left and right eyes from
5000 patients. There are eight categories for all the samples, which includes nor-255

mal, diabetes, glaucoma, cataract, AMD, hypertension, myopia and other dis-
eases.
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4.2. Evaluation metrics
Fréchet Inception Distance (FID) [23] is proposed to compute the distance be-
tween the generated sample distribution and real distribution. This method is a
consistent and robust approach for evaluating the generated images [44, 8], which
can be calculated by:

FID = ||µx − µg||22 + Tr
(∑

x +
∑

g−2(
∑

x

∑
g)

1
2

)
, (10)

where (µx,
∑

x) and (µg,
∑

g) are mean and covariance of the sample embeddings
from the data distribution and model distribution. A lower FID score indicates260

higher generated image quality. We use FID as the main objective assessment of
our experiments.
User study is still the golden standard for assessing the quality of generated im-
ages, especially for image translation, since it requires some kinds of semantic
mapping that are hard to be calculated [6, 56]. To evaluate the image transla-265

tion quality, referring to [7], we ask 20 persons to rate whether the target image
matches the source image (presenting the methods and samples in random order),
and calculate the ratio of “yes” answers as the grade. We use user study as a
subjective assessment for our experiments.
Classification accuracy is also combined. To demonstrate that the proposed270

method can boost the performance of downstream recognition task, we adopt this
metric to evaluate the classification performance, and the higher the better.

4.3. Ablation study for MBD
4.3.1. How many branches and channels are better?

Since our MBD decomposes a discriminator into branches by channels, so the275

branch number N should correlate with the total channel number M , but how to
choose the number of channels of each branch for better performance, and how
many branches are reasonable? In the previous section, we have already proved
that we can obtain the minimum error when we have N independent branches.
Ideally, the larger N we have the lower error we can get. But it would become280

increasingly difficult to make all the branches independent branches as N grows.
Also, total number of channels M increases the computational cost, making the
optimization more difficult. Insufficient channels may not have enough power to
handle a classification task. Thus, for a general task, both M and N should not be
too large or too small.285
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(a) (b) (c) (d)

Fig. 4. The relation between branch number N and and total channel number M in terms of FID
on cat↔dog translation, indicating that M = 64, N = 4 could be an optimal setting for further
experiments.

(a) (b) (c) (d)

Fig. 5. Training losses of different ensemble discriminator structures, showing that our MBD (blue)
can accelerate and stabilize convergence.

To find a suitable parameter combination for M and N for real cross-species
tasks, we empirically study the relation between branch numberN and total chan-
nel number M of a discriminator in terms of Fréchet Inception Distance(FID)
metric (lower is better). We use cat↔dog on Cat2dog dataset in cross-species
image translation task and adopt CycleGAN [81] as base architecture. As shown290

in Fig. 4 (a) (cat→dog) and (b) (cat←dog), most of the M curves indicate that
the translation results would be worse (higher FID) as N gets bigger, which im-
plies that too many branches may not be good for the performance. Besides, the
M = 8 and M = 16 curves are higher than the other curves, which shows that
the total number of channels should not be too small to feed enough information295

to the discriminator. From the three curves of M = 32, 64, 128, we can find that
M = 128 performs not better thanM = 64 andM = 32, indicating that too many
channels may not be helpful, further, N = 1 cannot achieve the best results, that
is, multi-branch discriminator, especially 2 and 4 branches, does work better than
a common discriminator.300

To further confirm the better branch number with a channel number, we change
the view from N to M , as shown in Fig. 4 (c) (cat→dog) and (d) (cat←dog),
almost each curve goes down and then goes up, demonstrating that the channel
number per branch M/N also should not be too large or too small, indicating that
there exists the optimal match point between N and M , which is N = 4,M =305
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64 at the lowest point. So we use this as the optimal setting for the following
experiments, i.e., 4-branch discriminator with 16 channels per branch (4MBD).

Note that the N = 1 curves in Figs. 4 (c) and (d) can also show that the
channel number should not be too large or too small for a common discriminator,
beyond that, they actually compare our multi-branch case to the case of single310

discriminator with fewer channels (SBD in Fig. 3) if we choose the same M/N
(e.g., M = 8 at N = 1 and M = 16 at N = 2), demonstrating that MBD performs
better than SBD. This conclusion can be verified further from Fig. 7. Therefore,
we suggest that each branch/discriminator to have no less than 16 channels and no
more than 128 channels to handle a common image-to-image task.315

4.3.2. How good is our MBD?
Apart from for the structure comparison shown in Fig.3, we also use cat↔dog

translation task on Cat2dog dataset for the empirical study of the different struc-
tures including SD, MSD, MD and our MBD. We build all the structures based on Cy-
cleGAN [81], with the total channel numberM = 64 and the branch/discriminator320

numberN = 2, 4 (we setM andN according to the performance shown in Fig.4).
Table 1 lists the FID and user study results of different structures with their

discriminator parameter amounts on cat↔dog image translation task. It can be
seen that, MSD performs even worse than SD, MD is a little superior to SD, while
our MBDwith 4 branches achieves the best FID and user scores with fewest param-325

eters(Table 1). We also notice that 4MD has better user scores but not good FID
results, and the reason may be the low diversity of images synthesized by 4MD.
The visual results in Fig. 6 can also conclude that our MBD does outperform the
single discriminator structure SD as well as multi-discriminator structures MSD
and MD. Dog and cat images obtained by SD have unclear outlines. Some dogs330

and cats generated by 2MSD or 4MSD have abnormal ears and nose.

Table 1: FID and user study with discriminator parameter amounts (DParams, millions) compari-
son of different models on cat↔dog image translation.

Method Cat→Dog Dog→Cat
DParamsFID User FID User

SD 43.8814 0.404 47.7190 0.676 13.92
2MSD 143.6501 0.181 86.4939 0.320 27.84
4MSD 56.5513 0.550 49.2084 0.750 55.68
2MD 43.6576 0.632 42.5042 0.905 27.84
4MD 43.6651 0.844 50.9160 0.862 55.68
2MBD 38.4135 0.683 44.7008 0.901 6.97
4MBD 36.0023 0.850 41.4614 0.940 3.50
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2MBD

4MD

2MD

4MSD

2MSD

SD

Fig. 6. The cat→dog (left) and dog→cat (right) translation results of different ensemble discrimi-
nator structures.

We further study the training loss and parameters of different structures. As
shown in Figs. 5 (a), (b) and (c), compares to SD, MSD and MD structures respec-
tively, which shows our MBD (blue color) can accelerate and stabilize the conver-
gence. Besides, Fig. 5 (d) illustrates that, for ensemble discriminator structure,335

independent optimization does work better than joint training. Moreover, the pa-
rameters of different GAN discriminators listed in Table 1 indicate that the MBD
structure dramatically reduces the model complexity compared to other structures.
Thus, we can say that MBD does render the optimization easier with lower training
loss and less number parameters.340

Finally, by visualizing feature maps of different layers in each branch of the
discriminator, we surprisingly find that MBD essentially bootstraps for task al-
location on the semantic level during translation. Brighter pixels mean higher
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activation response in heat maps [69] as shown in Fig. 8. We can find that the four
branches of discriminator are learned for different sub-tasks automatically, i.e., for345

the input cat image (left), the 1st branch is responsible for contours, the 2nd branch
takes in charge of furs, the 3rd branch is interested in eyes and edges, and the 4th
branch captures whiskers. Please note that the cat images and dog images come
from the two different discriminators of CycleGAN for the two different domains
(cat/dog). Thus, the heat maps of the four branches on the right seem to be a little350

different: the 1st branch catches the mouth and the illumination, the heat maps of
the 2nd branch display grounds and furs, the 3rd branch records contours, and the
maps of the 4th branch include eyes and whiskers.

As we mentioned in Section 3.2, our system would have the best performance
if each branch works independently. Through these visual experiments, we can355

easily find that each branch of MBD has a clear division of labor. We believe that
this fine labor division is a key to tackle high-level (e.g., keeping pose matching
during a cross-species task) image translation effectively.

(a) Human to flower (b) Flower to human

FI
D

FI
D

Total channel number (M) Total channel number (M)

Fig. 7. The relation between branch number N and and total channel number M in terms of
FID on more challenging flower↔human translation, further demonstrating that both SD and SBD
(N = 1) perform worse than our MBD.

4.3.3. Why MBD works for imbalanced learning?
An imbalanced dataset contains at least a rare category A and a rich category360

B. Suppose the rich category B has sufficient diversity including different poses,
numbers, positions and so on, while the rare category A has insufficient diversity
due to the lack of samples. To make a decision boundary between the A and
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Fig. 8. Visualization of feature maps from MBD different layers shows bootstrapping task alloca-
tion of branches.

B, a baseline solution is to draw a boundary in the middle of the two datasets
(Fig. 9(a)). However, due to lack of samples of A, the boundary cannot truly365

reflect the distribution of the two categories.
To improve the shape of the decision boundary, data-level machine learning

methods tried to adjust the imbalance ratio using various under-sampling and over-
sampling approaches (Figs. 9(b) and (d)) [62, 9]. Algorithm-level techniques com-
monly used a punishment/gain to the rich/rare category B/A (Fig. 9(c)) [39, 31].370

Indeed, we can obtain a better decision boundary with those approaches than a
baseline solution. But the decision boundary may be still inaccurate due to the
lack of samples of the rare category A near the boundary. Inspired by the transfer
learning strategy [68], if we can learn and translate the diversity of B to A fol-
lowing the semantic matching, we can draw a more reasonable decision boundary375

to improve the imbalanced classification accuracy (Fig. 9(e)). In other words, we
can have a better chance to solve the imbalanced classification task if we can take
advantages of the diversities on positions, poses, numbers and other cases from
the rich category B to enrich the category A.

As demonstrated in Fig. 8 in section4.3.2, each branch of our MBD can fo-380

cus on a specific translation task (e.g. eyes or whiskers) to tackle a semantic-
level translation task like pose matching or number matching. The semantic-
level image-to-image translation can practically help us to build a better decision
boundary by generating reasonable and meaningful samples for the rare category
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A.385

Fig. 9. (a) Decision boundary of a baseline solution, (b) decision boundary with down sampling,
(c) decision boundary with cost-sensitive loss function, (d) decision boundary with over sampling,
(e) decision boundary with semantic-level augmentation.

4.4. Cross-species image translation
For image-to-image translation between two species, we use CycleGAN [81]

as baseline to build CycleGAN-4MBD with 4-branch discriminator as our MBD
model. We compare our method with two state-of-the-art methods: MUNIT [27]
and DRIT [37]. And all the image results are listed with “input-output” pairs. We390

choose four species: cat, dog, flower and human, for our cross-species image-to-
image translation experiments, due to the limited space, we illustrate cat↔dog,
cat↔flower and flower↔human tasks in the paper, and leave other three tasks
(cat↔human, dog↔flower and dog↔human) in the supplementary file. Cat⇔Dog.
As mentioned in the literature [81, 27, 37], unpaired image-to-image translation395

between a cat and a dog is an open puzzle. We adopted the Cat2dog [37] dataset
for this task, and the translation results are shown in Fig. 10. We observe that the
images generated by our CycleGAN-4MBD exhibit the best performance. No-
tably, the synthesized dogs/cats of our method still maintain the same poses like
those of the input images. Table 2 shows the FID and user study results of the400

three models, where our CycleGAN-4MBD also achieves the highest scores on
both image translation tasks.

Table 2: FID and user study on cat↔dog image translation.

Method Cat→Dog Dog→Cat
FID User FID User

DRIT 88.6275 0.138 58.4392 0.610
MUNIT 47.4142 0.510 46.2864 0.810
CycleGAN-4MBD 36.0023 0.850 41.4614 0.940

Cat⇔Flower. Another experiment is implemented between Cat2dog and 102Flow-
ers datasets. We only choose cat images for cat↔flower translation. Compared
with image translation between cats and dogs, flowers seemly do not have explicit405

pose or facial representation. Thus, it is not possible to expect a semantic pose
matching between cats and flowers. However, the translation results shown on the
left of Fig. 11 still demonstrate that our CycleGAN-4MBD can obtain position
matching between these two farther species.

18



Fig. 10. The cat↔dog image translation results of our CycleGAN-4MBD compared to MUNIT
and DRIT.

To explore the potential of our method, we implement a more challenging410

experiment based on Dogs vs. Cats | Kaggle and 102Flowers datasets, because
both are captured in the wild. The translation results are displayed in the right of
Fig. 11. Compared with above experiments, there is an additional number match-
ing test from cat to flower due to the multiple instances. Also, the comparison
illustrates that both MUNIT and DRIT may work when input image includes a415

single individual only, whereas, MUNIT fails to convert two flowers to two cats
while our method can still do so. Besides, our method synthesizes the head of a
cat from a flower but without the full-body, which makes a lot more sense. The
FID results listed in Table 3 also confirm the best performance of our MBD on
cat↔flower image translation.420

Flower⇔Human. We also evaluate image translation between 102Flowers and
CelebA datasets. Fig. 12 (left) shows that all 3 methods can accomplish a human→flower
translation, however, the flower→human translation seems more challenging, where
images synthesized by MUNIT or DRIT always have a serious distortion while
our method can still achieve a reasonable solution.425
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Fig. 11. The controlled (left) and wild (right) cat↔flower image translation results of our
CycleGAN-4MBD compared to MUNIT and DRIT.

Table 3: FID on cat↔flower image translation.

Method Cat→Flower Flower→Cat
controlled wild controlled wild

DRIT 183.0757 166.9990 157.1238 221.0960
MUNIT 169.9913 143.5711 141.0376 187.7106
CycleGAN-4MBD 117.6854 125.9365 46.2705 128.1857

We then designed another challenging experiment based on LFW and 102Flow-
ers datasets, as both were captured in the wild. As shown in the right of Fig. 12,
our method can handle most of human→flower cases. Although we find some un-
reasonable distortion, we can still observe position and number matching in wild
flower→human translation. Table 4 also illustrates that our method can obtain the430

best FID results against MUNIT and DRIT.

20



Fig. 12. The controlled (left) and wild (right) flower↔human image translation results of our
CycleGAN-4MBD compared to MUNIT and DRIT.

x

Table 4: FID on flower↔human image translation.

Method Flower→Human Human→Flower
controlled wild controlled wild

DRIT 142.2868 149.5487 165.8483 111.9950
MUNIT 241.9420 205.8153 147.6277 127.9194
CycleGAN-4MBD 91.1127 136.0121 94.8746 102.8981

4.5. Imbalanced cross-species image translation
4.5.1. Semantic-level translation

In this section, we perform various image-to-image translation at the imbal-
anced setting (the images from different domains are not equal). We have one435

target domain, which has only 10 samples (few-shot setting), while the source
domain has redundant samples. Firstly, our method achieved the pose match-
ing for the imbalanced Sword lily→Watercress image translation. There are 130
sword lily image and only 10 watercress images at the training stage. We observed
the pose, position and number matching at the translation procedure as shown in440

Fig. 13. Our method can capture the pose expression of the input image and pre-
serve the content information after the translation. The proposed method has a
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strong ability to extract the number information of the input images and translate
the small flowers to the required representation.

Fig. 13. The visual translation results of proposed method at imbalanced setting, the rare cate-
gory ”Watercress” has only ten images. Our method can achieve the pose, position and number
matching during the translation procedure.

4.5.2. Data augmentation at imbalanced setting445

In this section, we discuss the potential applications of the proposal at the im-
balanced setting. Sometimes it is difficult and time-consuming to collect a large
number of images from a specified rare category. In many cases, insufficient sam-
ples often signifies poor diversity and effective information, which leads to that it
is a huge challenge to perform image recognition based on few samples (e.g. 10450

samples). For this problem, we can take advantage of the diversity from a dom-
inant category with redundant samples and adopt the cross-species techniques to
synthesize samples for the rare category, we can efficiently reduce the imbalanced
ratio without using the cost-sensitive losses [39, 4]. We apply our method for the
imbalanced cross-species image translation to achieve data augmentation.455

We aim to translate the redundant images from the dominant category to the
target rare category, which usually has quite few image samples. Through this
way, we can obtain more translated fake images in the dominant category with
semantic matching. We can obtain one better image classifier with the synthesized
images. To prove our assumption, we perform data augmentation based on these460
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translated images and boost the performance of image recognition in Table 5. The
visual translated images are shown in Fig. 14. For image classification, we adopt
the VGG-19 network[57] as our binary classifier and perform experiments at two
settings: 1) 200 passion (dominant category) and 10 water lily (rare category)
flower images; 2) 200 passion and 210 (200 translated images generated by our465

CycleGAN-4MBD and 10 original images) water lily flower images. For both
the two settings, the validation set includes 51 passion and 51 water lily images,
respectively. We obtain 66.67 percents accuracy on the validation set without any
support at the first setting. Due to the redundant passion and insufficient water
lily images, all the 51 passion images are successfully recognized. but 34 water470

lily images are wrongly classified as the passion category. Besides, we also adopt
the focal loss [39] using the default parameters (gamma = 2.0) following the
same train/test split. The focal loss is believed as a state of the art on imbalanced
learning[29] and achieves 71.57 percents accuracy. By combining the proposed
MBD, we can achieve a competitive 88.23% accuracy, which outperforms other475

methods a large margin. Following the same setting, we also perform experiments
using 200 passion and 10 rose images. The vanilla model obtains about 64.7
percentage points. The focal loss brings about 11 percentage improvement. Our
method can significantly enhance the average accuracy by more than 20 percents.

Table 5: The classification accuracy of the image classifier model at both two cases: with and
without translation. With the translated images from the dominant category, the classification
accuracy has been improved a lot.

Method Data split Classification accuracy
Source

split
Target
split Cross entropy Focal loss[39]

Cross entropy
with translation

Passion and
Water lily 200/10 51/51 66.67%(51/17) 71.57%(46/23) 88.23%(47/43)

Passion and Rose 200/10 51/51 64.70%(50/16) 76.47%(46/26) 89.21%(46/45)

Moreover, we also conduct the imbalanced data augmentation at a more chal-480

lenging setting: we have one dominant category with redundant images and sev-
eral rare categories with few images. We select 6 flower categories from 102Flow-
ers dataset, which contain Passion flower (251 images), Water Lily (194 images),
Rose (171 images), Windflower (54 images), English marigold (65 images) and
tree poppy (62 images). At this setting, we use 200 Passion flower images for485

training, while only randomly choose 10 training images for other flower cate-
gories. Following the above experimental setting, the train/test split of the 6 cate-
gories are listed in Table 6. To be noted, we only use 44 Windflower images due
to there are 54 images in total. The average classification accuracy of the vanilla
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(a) Passion to Water Lily 
translation at imbalanced setting

(b) Passion and Rose translation 
at imbalanced setting

Input Output Input Output Input Output

Fig. 14. The visual translation results of proposed method at imbalanced setting, the rare category
“Water lily” or “Rose” has only ten images. We use our model to translate the redundant source
images (Passion images) from the dominant category to the required Water lily images and Rose
images. During the translation procedure, our method can achieve the position and number match-
ing after the translation. More usefully, our method can even capture the pose representation and
generate corresponding outputs with same pose.

model is 51.17%. Considering the traditional image processing methods: the flip-490

ping and randomly cropping can also be applied for data augmentation, we also
perform experiments by using these two operations to perform up-sampling: we
randomly flip the image and resize it to 256 × 256, and then randomly crop the
resized image to 224× 224 to obtain more training samples. We obtain 200 aug-
mented samples based on the raw 10 images, which indicates that we obtain 20495

different random augmented samples from one original sample. The experimental
result comes to 52.84%. The focal loss can also promotes the classification ac-
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curacy at this setting (from 51.17% to 70.23%). Besides, to show that our MBD
architecture really achieves the boost at the imbalanced setting, we apply the orig-
inal CycleGAN to perform the translation among the categories to achieve data500

augmentation. The original CycleGAN can obtain 78.60% accuracy while our
CycleGAN-4MBD method achieves the highest 84.28% as a reason of generat-
ing high quality images with diversity. We also provide some visual translation
comparison results between CycleGAN and our proposed method in Fig. 15. As
shown in this figure, our method can handle the imbalanced image translation rea-505

sonably. Compared with the original CycleGAN method, the proposed method
can generate more realistic image outputs, which leads to a gain of the image
classification performance.

Table 6: The classification accuracy of the image classifier model using one dominant category
and 5 rare categories.

Method Data split Classification accuracy

train test Vanilla
Flip, resize
and crop

Focal
loss CycleGAN

CycleGAN
-4MBD

Passion 200 51 98.04%(50) 90.20%(46) 88.24%(45) 92.16%(47) 90.20%(46)
Rose 10 51 35.29%(18) 39.22%(20) 64.71%(33) 70.59%(36) 80.39%(41)

Water Lily 10 51 41.18%(21) 45.10%(23) 62.75%(32) 72.55%(37) 82.35%(42)
Windflower 10 44 38.64%(17) 40.91%(18) 63.64%(28) 72.73%(32) 81.82%(36)

English marigold 10 51 47.06%(24) 52.94%(27) 70.59%(36) 82.83%(42) 86.27%(44)
Tree poppy 10 51 45.10%(23) 47.06%(24) 68.63%(35) 80.39%(41) 84.31%(43)

Average - - 51.17% 52.84% 70.23% 78.60% 84.28%

4.5.3. The boost for general imbalanced learning tasks
In the real world, the imbalanced settings widely exist: such as the disease510

classification, fraud detection and so on. The minority class usually contains valu-
able information. Take the disease classification as an example, the healthy identi-
ties are always much more than the abnormal identities, so we pay more attention
to the detection of the negative samples. Although it is not an exact cross-species
example in medical image processing, there exists many similar features between515

the healthy and diseased examples. To explore the potential of our method on
general imbalanced learning problems, we adopt our method to achieve data aug-
mentation by translating the healthy samples to the diseased samples. We perform
the experiments on the ODIR5K dataset[1]. We choose the normal sample as the
dominant category and the cataract as the rare category. We perform experiments520

based on the photographs of the left eye. There are 1580 normal samples and
159 cataract samples, which are labeled. To evaluate the effectiveness of pro-
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Fig. 15. The visual translation results of proposed method at imbalanced setting, the left column
input represent the input passion flower images. The five columns at the right of the black dotted
line show the translated results to the five rare categories. During the translation procedure, our
method can achieve the position and number matching after the translation.

posed method, we perform the translating between the two categories. Following
the similar setting of Sec.4.5.2, the data split and the classification accuracy are
shown in Table.7. We also exhibit the visual translation results between the two525

categories in Fig.16. By introducing the translated images for the imbalanced set-
ting, we can boost the classification accuracy and improve the ability to recognize
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the negative samples of rare category.

Input Output

Normal to
Cataract

Cataract
to Normal

Fig. 16. The visual translation results between the Normal and Cataract fundus photographs of
proposed method at imbalanced setting.

Table 7: The classification accuracy of the image classifier model at both two cases: with and
without translation. With the translated images from the dominant category, the classification
accuracy has been improved a lot.

Method
Data split

(normal/cataract)
Classification accuracy

(normal/cataract)
Train
split

Test
split Cross entropy Focal loss[39]

Cross entropy
with translation

Normal and cataract 1480/59 100/100 87.5%(100/75) 91.5%(99/84) 95.0%(100/90)

5. Conclusion

We develop a novel, simple yet effective and efficient multi-branch discrimi-530

nator (MBD) structure for GANs, leading to high-quality cross-species image-to-
image translation on the semantic level. We first show the lower bound of MBD
and explain the optimal condition of MBD by mathematical analysis. Secondly,
our comprehensive experiments show that the proposed MBD structure can effec-
tively improve popular GANs by enhancing the generative ability while efficiently535

accelerating convergence and reducing parameters dramatically. Finally, we suc-
cessfully apply the proposed cross-species image-to-image translation techniques
on data augmentation tasks and show the potential in the field of imbalanced im-
age recognition.
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Appendix740

5.1. Implementation details
5.1.1. CycleGAN-4MBD

Our CycleGAN-4MBD model consists of two discriminators with 4 branches
for each. We adopt the generator network architectures from CycleGAN [81]. The
Encoder and the Decoder structures are defined as:745

Encoder:
CI64F7− CI128F4− CI256F4− Res256− Res256− Res256− Res256−
Res256−Res256
Decoder:
−Res256−Res256−Res256− CI128F4− C64F7− C3750

Here CImFn means the Convolution-InstanceNorm-ReLU layer with m n × n
spatial filters, and Res256 means a residual block with 256 3 × 3 filters. All
residual blocks use instance normalization. The last layer of the decoder uses a
Tanh instead of a ReLU as the activation function without instance normalization
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to obtain the image generation output. Each branch of the discriminator includes755

one task: True/False discrimination. The structure of each branch is defined as
Discrimination task:
C16− C32− C64− C128− C128− C1
We set convolution kernel size 4 and stride 2, all ReLUs in the discriminator are
leaky, with slope 0.2. We do not use any activation function at the last layer.760

Table 8: Computation evaluation (1K=1000 iterations).

Method Time (s/1K) DParams (M) Species
DRIT 2570.49 27.22 Two
MUNIT 418.58 16.54 Two
CycleGAN 450.19 13.92 Two
CycleGAN-2MBD 461.30 6.97 Two
CycleGAN-4MBD 595.91 3.50 Two
StarGAN 373.44 45.41 Multi
StarGAN-2MBD 342.13 23.06 Multi
StarGAN-4MBD 315.42 11.89 Multi

5.1.2. Computation comparison
We finally evaluate all the models for cross-species image translation on com-

putation, and Table 8 lists the results. All models are implemented in the same
environment (Intel Xeon E5-2620 v4, 128 GB, 1080 Ti, TensorFlow 1.8.0). It can
be seen that DRIT trains and tests both very slow, MUNIT trains faster resorting765

to joint optimization but the parameter amount for inference is larger, and our
CycleGAN-MBD models train a little slower than CycleGAN but test faster with
fewer parameters, while StarGAN-MBD models train and test both faster than
StarGAN.

5.2. Visualizing ensemble discriminators770

For better understanding the working mechanism of different structures of en-
semble discriminator, we visualize the feature maps of different CycleGAN-based
structures with a cat image (left) and a dog image (right) as input in Fig. 17. It can
be seen that both multiple branches and multiple discriminators can learn different
sub-tasks for each. However, the MSD structures have unclear and repetitive di-775

vision of labor, the MD structures perform better than MSD structures with clearer
division of labor (e.g., edges and eyes) but still worse than our MBD structures,
which has more clear and less repetitive labor division. Thus, our MBD can tackle
high-level (e.g., cross-species) image translation better.
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5.3. Additional experimental comparison780

5.3.1. Cat⇔Human
The cat↔human image translation is implemented between Cat2dog and CelebA

datasets, Table 9 lists the FID comparison, and Fig. 18 shows the visual translation
comparison.

Table 9: FID results on cat↔human image translation.

Method Cat→Human Human→Cat
DRIT 161.9762 184.2454
MUNIT 152.7639 108.1680
CycleGAN-4MBD 139.4375 67.8787

5.3.2. Dog⇔Flower785

The dog↔flower image translation is implemented between Cat2dog and 102Flow-
ers datasets, Table 10 lists the FID comparison, and Fig. 19 shows the visual trans-
lation comparison.

Table 10: FID results on dog↔flower image translation.

Method Dog→Flower Flower→Dog
DRIT 145.6682 176.7891
MUNIT 138.1872 86.1801
CycleGAN-4MBD 118.2336 74.2712

Table 11: FID results on dog↔human image translation.

Method Dog→Human Human→Dog
DRIT 118.8862 146.2622
MUNIT 142.8348 147.8955
CycleGAN-4MBD 134.0117 87.1139

5.3.3. Dog⇔Human
The dog↔human image translation is implemented between Cat2dog and CelebA790

datasets, Table 11 lists the FID comparison, and Fig. 20 shows the visual transla-
tion comparison.
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5.3.4. More results
We present more results of cat↔dog, cat↔flower (controlled and wild), flower↔human

(controlled and wild) in Fig. 21, Fig. 22, Fig. 23, Fig. 24, Fig. 25, respectively.795
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Fig. 17. Visualizing different CycleGAN-based ensemble discriminator structures for comparison.

38



Fig. 18. The cat↔human image translation results of our CycleGAN-4MBD compared to MUNIT
and DRIT.
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Fig. 19. The dog↔flower image translation results of our CycleGAN-4MBD compared to MUNIT
and DRIT.
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Fig. 20. The dog↔human image translation results of our CycleGAN-4MBD compared to MU-
NIT and DRIT.
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Fig. 21. The cat↔dog image translation results of our CycleGAN-4MBD compared to MUNIT
and DRIT.
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Fig. 22. The cat↔flower image translation results of our CycleGAN-4MBD compared to MUNIT
and DRIT.
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Fig. 23. The wild cat↔flower image translation results of our CycleGAN-4MBD compared to
MUNIT and DRIT.
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Fig. 24. The flower↔human image translation results of our CycleGAN-4MBD compared to
MUNIT and DRIT.
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Fig. 25. The wild flower↔human image translation results of our CycleGAN-4MBD compared
to MUNIT and DRIT.
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