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a b s t r a c t

Image translation is to learn an effective mapping function that aims to convert an image from a
source domain to another target domain. With the proposal and further developments of generative
adversarial networks (GANs), the generative models have achieved great breakthroughs. The image-to-
image (I2I) translation methods can mainly fall into two categories: Paired and Unpaired. The former
paired methods usually require a large amount of input–output sample pairs to perform one-side
image translation, which heavily limits its practicability. To address the lack of the paired samples,
CycleGAN and its extensions utilize the cycle-consistency loss to provide an elegant and generic
solution to perform the unpaired I2I translation between two domains based on unpaired data. This
thread of dual learning-based methods usually adopts the random sampling strategy for optimizing
and does not consider the content similarity between samples. However, not every sample is efficient
and effective for the desired optimization and leads to optimal convergence. Inspired by analogical
learning, which is to utilize the relationships and similarities between sample observations, we propose
a novel generic metric-based sampling strategy to effectively select samples from different domains
for training. Besides, we introduce a novel analogical adversarial loss to force the model to learn
from the effective samples and alleviate the influence of the negative samples. Experimental results
on various vision tasks have demonstrated the superior performance of the proposed method. The
proposed method is also a generic framework that can be easily extended to other I2I translation
methods and result in a performance gain.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Thanks to the proposal of generative adversarial networks
GANs) (Goodfellow et al., 2014), the image-to-image (I2I) trans-
ation technology has made great breakthroughs in various com-
uter vision fields such as deraining (Zhang, Sindagi, & Patel,
017), super-resolution (Johnson, Alahi, & Fei-Fei, 2016; Ledig
t al., 2017), colorization (Su, Chu, & Huang, 2020) and so on (Bau
t al., 2019; Chen et al., 2016; Luo, Liu, Guan, Yu, & Yang, 2020;
ang, Liu, Zhu, Yakovenko, et al., 2018; Zheng, Yu, Wu et al.,
021; Zheng, Yu, Zheng, Yang, & Shen, 2021). Many variants
f GAN-based image translation algorithms were designed to
chieve remarkable translation performance. The existing I2I
ranslation methods can mainly fall into two categories: Paired
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(Isola, Zhu, Zhou, & Efros, 2017; Wang, Liu, Zhu, Tao, et al., 2018;
Yi, Liu, Lai, & Rosin, 2019; Zheng, Wang, Yu, Zheng, & Zheng, 2018)
and Unpaired (Huang, Liu, Belongie, & Kautz, 2018; Kim, Kim,
Kang, & Lee, 2020; Lee, Tseng, Huang, Singh, & Yang, 2018; Yi,
Zhang, Tan, & Gong, 2017; Zheng et al., 2019; Zheng, Wu, Han, &
Shi, 2020; Zhu, Park, Isola, & Efros, 2017). The former paired I2I
translation methods usually require a large amount of paired data
to conduct precise one-side image translation. In consideration of
the lack of the paired samples and labors to collect paired training
data, Cycle-GAN methods (Kim, Cha, Kim, Lee, & Kim, 2017; Yi
et al., 2017; Zhu et al., 2017) utilized the cycle-consistency loss to
provide an elegant and generic solution to perform the unpaired
I2I translation between two image domains based on unpaired
data. Furthermore, to achieve the unpaired I2I translation among
multiple domains, the representative StarGAN (Choi et al., 2018)
extended CycleGAN (Zhu et al., 2017) and combined an additional
classification loss to perform a conditional translation (Choi et al.,
2018; Liu et al., 2019). However, all of these above-mentioned
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Fig. 1. The intuitive comparison between random sampling strategy of previous
npaired I2I methods and our metric-based sampling strategy. The random

sampling strategy could result in wrong gradient descent directions (indicated
by red arrows) due to the irrelevant content representations. In contrast,
our method can learn reasonable feature representations and perform better
because the metric-based sampling strategy can find the correct gradient descent
direction (indicated by the green arrow). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

methods did not consider an effective sampling strategy to choose
effective and suitable samples for the adversarial learning to
promote the unpaired I2I translation performance.

In general detail, given one sample x from the source domain
X, most of unpaired I2I translation methods (e.g., CycleGAN)
randomly sample an image y in the target domain Y and com-
pute the loss constraint (e.g., cycle-consistency loss) between the
training data (x, y). This random sampling strategy assumes that
every sample is efficient and equally important for optimizing the
model. However, the assumption may not hold on most cases.
In a lucky case, the training model may unearth the key clues
what the models need to learn between x and y. Unfortunately,
in most cases, x and y may have different feature representations.
In other words, there is a content mismatch between x and y,
which will result in the wrong gradient descent (indicated by the
red arrows) of the model shown in Fig. 1. Thus, the model cannot
obtain an optimal solution or catastrophically converge slowly
due to the random gradient descent directions. The intrinsic
property of the random sampling strategy cannot guarantee the
training data with correct gradient descent direction is sampled.
Besides, examples in the target domain are wrongly assumed to
have equal importance during the training process. However, as
illustrated in Fig. 1, we argue that not every sample is efficient
for the convergence of the model and providing correct gradient
descent direction. To address this issue, inspired by the analog-
ical learning (Morrison et al., 2004; Vendetti, Matlen, Richland,
& Bunge, 2015): an artificial intelligence engine can perceive and
utilize relationships and similarity between the observations and
recall previous observations for scene understanding, we propose
a novel Analogical Generative Adversarial Network (AnaGAN for
short) with an effective metric-based sampling strategy to select
the efficient training sample for optimization shown in Fig. 1. The
proposed AnaGAN could utilize the content similarity between
samples and choose more effective samples from the target do-
main to teach the generator how to synthesize reasonable and

plausible outputs.
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An intuitive illustration of our method is shown in Fig. 2:
an engine is reminded of some similar cases when analogical
retrieval occurs (Gentner & Smith, 2013), which means to seek
similar observations from memory. To measure the content simi-
larity in a low dimensional semantic space, we combine the deep
metric learning (Bellet, Habrard, & Sebban, 2013; Duan, Zheng,
Lin, Lu, & Zhou, 2018; Kaya & Bilge, 2019) to rank the samples
from Y when it sees an image x from X. Then our AnaGAN
utilizes the content similarity and relationship between x and the
selected samples in Y for effective learning to obtain a better
mapping function from X to Y. Furthermore, we consider the
analogical evaluation and combine a dual analogical adversarial
loss to enhance the importance of the selected efficient samples
and alleviate the influence of negative samples with the content
mismatch. Through these operations, we can develop a universal
I2I translation framework, which is superior to previous methods
and achieve better translation performance without introducing
extra network parameters.

In this paper, we propose a novel generic analogical generative
adversarial network for unpaired I2I translation tasks. To alleviate
the content mismatch in the random sampling strategy proposed
in CycleGAN (Zhu et al., 2017), the proposed method has de-
signed a simple and effective metric-based sampling strategy to
promote the performance of the unpaired I2I translation task.
Comprehensive experiments on various large-scale datasets are
conducted and the translation performance has demonstrated
the effectiveness of the proposed method. Besides, the proposed
AnaGAN is also a generic framework that can be easily extended
to other unpaired I2I solutions. To sum up, our main contributions
are listed as follows.

• We propose a simple, novel and effective end-to-end un-
paired I2I translation framework based on the analogical
learning scheme and deep metric learning principle to boost
the unpaired translation performance. The dual analogical
adversarial loss is designed to force the model to learn from
effective samples and alleviate the influence of the content
mismatch.

• Our AnaGAN can heavily promote the unpaired transla-
tion performance through a more effective analogical learn-
ing. The comprehensive experiments have demonstrated the
superior performance of the proposed method.

• The proposed method is a general training strategy, which
could be easily extended to other unpaired I2I translation
methods such as MUNIT and UNIT and obtain a remarkable
performance gain without introducing any extra network
parameters and computation cost.

2. Related work

2.1. CycleGAN solutions

Unpaired domain translation (Almahairi, Rajeswar, Sordoni,
Bachman, & Courville, 2018; Chen, Pan, Yao, Tian, & Mei, 2019;
Pizzati, Charette, Zaccaria, & Cerri, 2020; Tang, Liu, Xu, Torr,
& Sebe, 2021; Wang, Du, & Guo, 2019) aims to transfer the
shared knowledge from a source domain to another target do-
main using unpaired training data. For the pixel-level unpaired
domain adaptation, Cycle-GAN based methods, which adopted
the cycle-consistency constraint to perform unpaired I2I transla-
tion, (Huang et al., 2018; Lee et al., 2018; Liu, Breuel, & Kautz,
2017; Yi et al., 2017; Zhu et al., 2017) became popular. These
Cycle-GAN based I2I translation methods have been utilized in
various applications such as image style transfer (Gatys, Ecker, &
Bethge, 2015; Johnson et al., 2016; Sanakoyeu, Kotovenko, Lang,
& Ommer, 2018), night-to-day (Zheng et al., 2020), and image

restoration (Li et al., 2018). These visual tasks aim to perform
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Fig. 2. The intuitive explanation of our AnaGAN. When observing a new photo, to achieve reasonable photo-to-caricature image translation, the agent would recall
the seen caricature images and learn the mapping function between the photo observation and the top caricature images with most content similarities. Through
mimicking, the model could generate more plausible caricature outputs.
c

transfer one image with a source style to the desired output
with the target style. To promote the translation quality, some
specially designed networks (Tang et al., 2021) were further de-
signed. Training Cycle-GAN based I2I translation model requires
sampling two images from both source and target domain to
obtain gradient for model optimization. The random sampling
strategy is widely applied during the training of the Cycle-GAN
methods, in which each sample contributes to the optimization of
the model equally. However, some negative samples may degrade
the adversarial learning efficiency. To address this issue, Gomez
et al. (2020) firstly proposed to combine a parallel image retrieval
system to boost the disentanglement of the domain-specific and
domain-invariant feature representations through multiple task
learning. However, the iterative training process of Gomez et al.
(2020) is cumbersome and requires a sophisticated design. Fur-
thermore, Gong et al. proposed to formulate analogical image
translation AIT (Gong, Dai, Chen, Li, & Van Gool, 2020) to uti-
lize the content relationship between image pairs. In this work,
we propose a novel, simple and effective metric-based sampling
strategy based on analogical learning to utilize the content sim-
ilarity between samples. Moreover, the proposed method is an
unpaired I2I training framework, which alleviates the labor to
collect paired samples in AIT (Gong et al., 2020).

2.2. Analogical learning

Analogy, which refers to the ability to perceive and utilize
relational similarity between two objects, systems, or events, can
establish an inference projection between two domains (Prade
& Richard, 2017). Learning by analogy involves summarizing a
relationship between two similar situations or events and gener-
ating further inferences driven by these commonalities (Cambria,
Gastaldo, Bisio, & Zunino, 2015; Gentner, 2006; Vendetti et al.,
2015). Analogical learning is regarded as a fundamental aspect
of human cognition (Knowlton, Morrison, Hummel, & Holyoak,
2012). This crucial cognitive mechanism distinguishes human
cognition from that of other intelligent species (Morrison et al.,
2004). Analogical learning is also proved to be efficient in many
computer vision tasks. Tao et al. developed a novel analogy-detail
networks (termed ADNets) for object recognition (Tao, Hong, Shi,
Chang, & Gong, 2020). Chen et al. proposed a hybrid analogi-
cal learning system to boost the visual relation detection pro-
cess (Chen & Forbus, 2021). Gong et al. proposed AIT (Gong et al.,
2020) and established ‘‘Analogical Image Translation’’ framework.
AIT took advantage of analogical learning to build an I2I transla-
tion method and achieve a zero-shot image translation capability
by coupling a supervised training scheme in a synthetic domain.
In our paper, we seek to extend the idea of Analogical Image
ranslation to a more general unpaired I2I case. Unlike AIT, which
till requires image pairs for training, a standard unpaired I2I
ranslation framework is introduced in our paper. The forward
(x) and backward G(y) translation function target to utilize the
ontent similarity between samples to achieve effective learning.
168
2.3. Deep metric learning

Deep metric learning (Bellet et al., 2013; Duan et al., 2018;
Kaya & Bilge, 2019) aims to measure the similarity among sam-
ples and provide an optimal distance metric for different com-
puter vision tasks. The deep metric learning had achieved remark-
able performance on image retrieval (Li & Tang, 2015), text-to-
image matching (Wei et al., 2020; Zhang & Lu, 2018) and rec-
ommendation system (Campo, Espinoza, Rieger, & Taliyan, 2018).
To compute the similarity between samples, some attempts (Hu,
Lu, & Tan, 2014; Kaya & Bilge, 2019) had been done to find
a good distance metric to achieve superior results. To measure
the distance between samples, euclidean distance (Danielsson,
1980), Mahalanobis distance (De Maesschalck, Jouan-Rimbaud, &
Massart, 2000) and Kullback–Leibler (Elgammal, Duraiswami, &
Davis, 2003) were designed to evaluate the distance in the pro-
jected space. Siamese (Bertinetto, Valmadre, Henriques, Vedaldi,
& Torr, 2016) and Triplet (Hoffer & Ailon, 2015) networks are
two commonly used network architectures with shared weights
to measure the distance among different samples. The triplet
loss is designed to enlarge the distance between the anchor and
the negative sample while reducing the distance between the
anchor and the positive sample. In this paper, considering that
not every sample is equally important for the optimization, we
take advantage of deep metric learning to choose similar samples
between the source and target domain to enhance the training
efficiency. Furthermore, inspired by the triplet loss (Hoffer &
Ailon, 2015), we propose a dual analogical adversarial loss to force
the model to learn from effective samples while alleviating the
influence of negative samples.

3. Methods

3.1. Preliminary

As a generic unpaired I2I solution, the proposed AnaGAN is
based on the previous CycleGAN solution (Huang et al., 2018; Zhu
et al., 2017). We replace the random sampling strategy adopted in
CycleGAN with a novel metric-based sampling strategy. Follow-
ing the idea of analogical learning, we believe that the samples
sharing high content similarity should help the model to learn an
effective representation. In this work, the metric-based sampling
strategy is proposed, in which the sample with high content sim-
ilarity is utilized while the irrelevant samples are discarded. More
specifically, we randomly sample a sample x (termed anchor)
from the source domain X, then we obtain the top k retrieval
outputs: {yi}k1 in the target domain Y to formulate the positive
pool. The rest of the training samples from Y are regarded as
the negative pool. Similarly, the same sampling strategy is also
onducted in the source domain X to get the positive and negative
pools based on y for the reverse direction. Furthermore, we design
a dual analogical adversarial loss to force the model to learn from
the effective samples and reduce the influence of the negative

samples with the content mismatch.
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.2. Image translation based on dual learning

To achieve pixel-level unpaired domain translation between
wo visual domains: X and Y (e.g., the photo image domain and
nother caricature image domain). Two reverse image translation
unctions are introduced: the forward translator F aims to gener-
te ỹ = F (x) in the target domain Y while the reverse translator
targets to synthesize the counterpart reconstruction x̂ = G(ỹ)

n the original photo domain X. To make ỹ look like the samples
rom Y as possible, the widely used adversarial loss is adopted:

adv(F ,DY) =EY[logDY(y)] + Eỹ[log(1 − DY(ỹ))],
with ỹ = F (x),

(1)

where DY is the domain-specific discriminator for the domain Y.
The reverse adversarial loss Ladv(G,DX) is also computed to syn-
thesize reasonable outputs for the reverse translation direction,
where DX is the domain-specific discriminator for domain X. At
the training stage, x and y are randomly selected in the Cycle-
GAN (Zhu et al., 2017). There could be content mismatch between
x and y of using the random sampling strategy. To preserve the
content information as much as possible, the cycle-consistency
loss Lcyc (Zhu et al., 2017) is adopted to link F and G:

Lcyc(F ,G) =EX[∥G(F (x)) − x∥1] +EY[∥F (G(y)) − y∥1], (2)

Through the pixel-wise distance, we can preserve the content
information after the unpaired I2I translation. Most CycleGAN
solutions adopt the random sampling strategy during training,
which is able to reduce variance and avoid overfitting. However,
a large sample size of X and Y may not help unpaired I2I task,
since the selected samples from X and Y can have totally different
content representations (please refer to Section 4.5 for more de-
tail). Thus, the randomly selected sample can harm the unpaired
generative model as shown in Fig. 1. To alleviate the negative
influence, we propose a novel metric-based sampling strategy.

3.3. Metric-based sampling strategy

Take a close look to our method, to obtain closely associated
training samples from source and target domain, the metric-
based sampling strategy is designed. We adopt a pre-trained
ResNet50 (He, Zhang, Ren, & Sun, 2016) model Φ on ImageNet
(Deng et al., 2009) to obtain the feature vectors after the global
average pooling layer and compute the content similarity be-
tween samples from different domains. During the unpaired I2I
translation process, the selection procedure actively selects k
most similar samples {yi}k1 from Y (with n training samples and
n ≫ k) based on content similarity with the anchor image x. To
be more specific, given an anchor image x from X, the network
Φ select the top k samples {yi}k1 from Y according to content
similarity between Φ(x) and Φ({yi}n1) to formulate a subset of
Yp (positive pool). We formulate a negative pool Yn using the left
n−k training samples from Y. The examples yp sampled from the
subset of Yp(yp|x) : {yip|x}

k
1 ∈ Y and yn from Yn(yn|x) : {yin|x}

n−k
1 ∈

Y are chosen for the unpaired training1. For arbitrary yp and yn,
we have the following restriction:

∥Φ(x) − Φ(yp)∥1 < ∥Φ(x) − Φ(yn)∥1, (3)

which indicates that an arbitrary positive sample yp is more
similar to x than a negative yn in the projected content space (see
Fig. 3).

1 For simplicity, we only illustrate the metric-based sampling strategy for the
orward adversarial training and Xp(xp|y) and Xn(xn|y) are also sampled for the
ackward adversarial training following the same manner.
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3.4. Dual analogical adversarial loss

As we discussed in Section 3.2, given a sample x, it is not
efficient to train the network when the corresponding adversarial
sample y is selected randomly. Inspired by analogical learning
theory (Gentner & Smith, 2013), we argue that similar samples
would have a better chance to guide the dual adversarial learning,
which could result in an accurate gradient descent direction and
achieve better translation performance. Thus, the similar sample
(yp) should have greater contributions than the dissimilar ones
yn). Following this intuition, we redesign the adversarial loss
unction as:

adv(F ,DY)yp∈Yn,yn∈Yn =α(EYp [logDY(yp|x)] + Eỹ[log(1 − DY(ỹ|x))])

+ EYn [logDy(yn|x)] + Eỹ[log(1 − DY(ỹ|x))],

with ỹ = F (x),

(4)

where α is the parameter to balance the influence of the positive
samples and negative examples. Higher α indicates that positive
samples have a higher contribution for the unpaired adversarial
training. In our experiments, we set α = 2.0. More discussion and
experiments about the choice of α could be found in Section 4.5.
For a dual learning framework, the backward adversarial loss
function can also be written as:

Ladv(G,DX)xp∈Xp,xn∈Xn =α(EXp [logDX(xp|y)] + Ex̃[log(1 − DX(x̃|y))])

+ EXn [logDX(xn|y)] + Ex̃[log(1 − DX(x̃|y))],

with x̃ = G(y),

(5)

and the final adversarial loss Ladv is described as:

Ladv = Ladv(F ,DY) + Ladv(G,DX), (6)

3.5. Final objective

The total loss of our method is a weighted sum of all the losses
mentioned above:

L(F ,G,DX,DY, Φ) = Ladv + λLcyc, (7)

where λ is the hyper-parameters to balance the different loss
terms and we set λ = 10 following CycleGAN (Zhu et al., 2017).
We optimize the final objective with Adam optimizer (Kingma
& Ba, 2015). To be noted, Φ is frozen during the whole training
process.

4. Experiments

4.1. Implementation details

We compare the proposed method with previous unpaired
methods based on various vision tasks, including the defogging,
photo-to-caricature and night-to-day tasks. We first choose two
generic unpaired image-to-image translation methods: Cycle-
GAN (Zhu et al., 2017) and MUNIT (Huang et al., 2018) for all
vision tasks. For defogging task, we choose the paired Pix2pixHD
(Wang, Liu, Zhu, Tao, et al., 2018) for comparison considering
the paired samples exist for this task. Besides, we also perform
ToDayGAN (Anoosheh, Sattler, Timofte, Pollefeys, & Van Gool,
2019) for comparison. As for photo-to-caricature task, besides
MUNIT (Huang et al., 2018) and CycleGAN (Zhu et al., 2017), two
specially designed photo-to-caricature methods: CariGAN (Cao,
Liao, & Yuan, 2018), DualPathGAN (Zheng et al., 2019) are chosen
for comparison. Finally, we choose ToDayGAN (Anoosheh et al.,
2019), TSIT (Jiang et al., 2020) for the night-to-day translation
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Fig. 3. The illustration of our triplet-like adversarial loss. We encourage the model to learn from the effective samples with similar content representations and
suppress the influence of the negative samples with content mismatch.
task. We follow the official instructions of those methods and
make a fair setting for comparison. Please note that the proposed
AnaGAN has the same network architecture and parameters as
CycleGAN. We choose α = 2.0 and k = 50 in our experiments.

4.2. Evaluation metrics

Fréchet Inception Distance (FID) (Heusel, Ramsauer, Un-
terthiner, Nessler, & Hochreiter, 2017) is defined as the distance
between the generated sample distribution and real distribution.
FID is a consistent and robust measurement for evaluating the
generated images (Borji, 2019; Lucic, Kurach, Michalski, Gelly, &
Bousquet, 2018), which can be calculated by:

FID = ∥µx − µg∥
2
2 + Tr

(∑
x +

∑
g −2(

∑
x
∑

g )
1
2

)
, (8)

where (µx,
∑

x) and (µg ,
∑

g ) are mean and covariance of the
sample embeddings from the data distribution and model dis-
tribution. A lower FID score indicates higher generated image
quality.

LPIPS (Learned Perceptual Image Patch Similarity (Zhang, Isola,
Efros, Shechtman, & Wang, 2018)) computes the perceptual sim-
ilarity between two images based on image patches. A lower
LPIPS means more perceptual similarity between two images. We
compute this metric between the translated outputs and corre-
sponding ground-truth images to measure the image translation
ability.

Image Quality is also adopted to measure the image genera-
tion quality based on paired data. We compute the peak signal-
to-noise ratio (PSNR) to measure the quality of reconstruction of
lossy compression. A higher PSNR score indicates better image
translation performance. The structural similarity index (SSIM) is
computed to evaluate the structural similarity. The higher SSIM,
the better the translation performance.

Downstream vision tasks are conducted to evaluate the per-
formance of the unpaired image-to-image translation. We
adopted a Deeplab-v3 model2 pre-trained on Cityscapes dataset
(Cordts et al., 2016), performing semantic segmentation on the
translated outputs based on the evaluation scripts.3 We com-
pute the Intersection-Over-Union (IoU) between the outputs and
the ground truths. We report the mean IoU (mIoU) of all the
categories.

2 https://github.com/srihari-humbarwadi/DeepLabV3_Plus-Tensorflow2.0
3 https://github.com/mcordts/cityscapesScripts
170
4.3. Dataset

Foggy Cityscapes (Sakaridis, Dai, Hecker, & Gool, 2018) is a re-
cently proposed synthetic foggy dataset simulating fog on real
scenes (Cordts et al., 2016) with three different levels of visibility:
150 m, 300 m and 600 m. For this dataset, we choose clear
images and foggy images with 150 m visibility following the
original Train/Val split. In all the experiments, 2975 clear and
the corresponding foggy images are adopted for training and the
other 500 clear and corresponding foggy images for performance
evaluation.

IIIT-CFW (Mishra, Rai, Mishra, & Jawahar, 2016) is a caricature
dataset, which has both the photo images of the celebrities and
the corresponding cartoon faces in the wild. 8928 annotated
cartoon faces of famous personalities in the world with varying
professions. Also, it provides 1000 real faces of the public figure
for cross-modal retrieval tasks. Due to the lack of the paired
samples (the facial orientation and expression of the photo and
caricature for the same identity vary a lot), it is not suitable to
perform paired training on this dataset. For this dataset, we adopt
the images from the first 800 public celebrities for training and
others for evaluation.

Alderley is originally proposed for the SeqSLAM algorithm (Mil-
ford & Wyeth, 2012), which collected the images for the same
route twice: once on a sunny day and another time on a stormy
rainy night. Every frame in the dataset is GPS-tagged, thus each
nighttime frame has a corresponding daytime frame. Due to the
dynamic objects (pedestrians and cars), the daytime and night-
time images with frame correspondence are not paired. For this
dataset, we inherit the frame correspondence to formulate our
positive pool (the k consecutive images according to the frame
correspondence) in our experiment. This dataset provides 14,607
frame matchings and we choose the first 12,000 daytime and
nighttime images for training and the rest for evaluation.

4.4. Performance comparison

4.4.1. Defogging
In this section, we performed the low-level defogging task on

a complex and diverse scene dataset. In detail, we performed
the defogging task on the synthetic Foggy Cityscapes dataset
(Sakaridis et al., 2018) following the official Train/Val split. We
compared the proposed method with MUNIT (Huang et al., 2018),
CycleGAN (Zhu et al., 2017), and ToDayGAN (Anoosheh et al.,
2019), which were optimized by the unpaired training strategy.

https://github.com/srihari-humbarwadi/DeepLabV3_Plus-Tensorflow2.0
https://github.com/mcordts/cityscapesScripts
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Fig. 4. The visual comparison between different methods for defogging task on Foggy Cityscapes (Sakaridis et al., 2018) dataset.
Table 1
Quantitative comparison of defogging task on Foggy Cityscapes (Sakaridis et al., 2018) dataset. The symbol ↑ (↓) indicates that the
larger (smaller) the value, the better the performance. The best three values in each metric are denoted into red, green and blue.
Pix2pixHD∗ indicates that Pix2pixHD method is optimized in the supervised learning manner.
Method SSIM↑ PSNR↑ LPIPS↓ FID↓ mIoU↑

CycleGAN (Zhu et al., 2017) 0.8789 25.91 0.3612 72.12 48.15
MUNIT (Huang et al., 2018) 0.8601 24.17 0.3731 88.12 43.12
ToDayGAN (Anoosheh et al., 2019) 0.8821 26.12 0.3515 67.43 51.92
Pix2pixHD∗ (Wang, Liu, Zhu, Tao, et al., 2018) 0.9051 27.18 0.3414 59.38 57.91
AnaGAN 0.8945 26.87 0.3324 63.23 56.14
Table 2
Quantitative comparison of photo-to-caricature translation task on IIIT-CFW
(Mishra et al., 2016) dataset.
Method FID↓

MUNIT (Huang et al., 2018) 178.7
CycleGAN (Zhu et al., 2017) 136.3
CariGAN (Cao et al., 2018) 110.4
DualPathGAN (Zheng et al., 2019) 86.45
AnaGAN 47.27

Due to the existence of the paired samples (the foggy images are
synthetic from a physical model), we also performed the fully
supervised Pix2pixHD method. To make a fair comparison, all the
methods were optimized under the image resolution 1024 × 512.
he qualitative results of applying different methods on the Foggy
ityscapes dataset (Sakaridis et al., 2018) were shown in Fig. 4. As
llustrated, our AnaGAN could synthesize outputs with detailed
ontent information while preserving the content and structural
nformation of the original foggy images. The quantitative com-
arison was also reported in Table 1. Compared with other meth-
ds (MUNIT and CycleGAN can only generate fuzzy outputs while
ome detailed information has been lost after the image trans-
ation), our AnaGAN can effectively remove the fogginess of the
nput images and synthesize images with reasonable feature pat-
erns. Besides the visual quality measurement, we also adopted
he downstream semantic segmentation task as one objective
valuation metric to measure the visual translation performance.
he mIoU scores of different methods are provided in Table 1.
rom the comparison, our method could still achieve the best
emantic segmentation performance.

.4.2. Photo-to-caricature
Besides the defogging task, we also performed the unpaired

hoto-to-caricature image translation based on a challenging IIIT-
FW (Mishra et al., 2016) dataset. Due to the highly abstracted
haracteristic of the caricature images, the translation from the
hoto images to the corresponding caricature counterparts is
xtremely challenging. Synthesizing a vivid and lifelike caricature
utput requires the model to extract and understand the implicit
acial representations of the caricature images, and then exagger-
te and magnify the learned representations. We compared our
ethod with CariGAN (Cao et al., 2018), MUNIT (Huang et al.,
018), CycleGAN (Zhu et al., 2017), and DualPathGAN (Zheng
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Table 3
Quantitative comparison of night-to-day translation task on Alderley dataset
(Milford & Wyeth, 2012).
Method FID↓

MUNIT (Huang et al., 2018) 141.5
CycleGAN (Zhu et al., 2017) 169.2
ToDayGAN (Anoosheh et al., 2019) 107.2
TSIT (Jiang et al., 2020) 93.81
AnaGAN 75.14

et al., 2019). The qualitative comparison of different methods
was shown in Fig. 5. As illustrated, our AnaGAN could generate
caricature outputs according to the content representation of the
input photo images. As for the quantitative comparison between
various methods, we reported the FID scores of different methods
in Table 2. Our method could also achieve the lowest FID score
among all the methods, which indicates our method could align
the photo and caricature domains well.

4.4.3. Night-to-day for autonomous driving
In autonomous driving, it is laborious and sometimes difficult

to collect abundant data with clean and correct annotations for
various computer vision tasks. Most of the available datasets con-
tain images mostly from daytime driving. Models trained on those
datasets are subject to performance degradation once they are
tested on a different domain such as rainy night conditions. One
possible solution is to perform night-to-day translation so that we
can obtain a robust and accurate visual perception. Considering
the dynamic objects and moving pedestrians, it is nearly impos-
sible to collect paired daytime–nighttime images. The unpaired
I2I is a popular choice for night-to-day image enhancement. Due
to the refection and strong lights, it is extremely challenging to
perform the translation from the rainy nighttime domain to the
daytime domain. We compare the proposed method with current
night-to-day translation methods such as ToDayGAN (Anoosheh
et al., 2019) and TSIT (Jiang et al., 2020). Due to the lack of paired
samples, we do not perform the paired methods for this task.
The visual qualitative translation performance among different
methods is illustrated in Fig. 6. The proposed method could
better preserve the content information of the billboard, which
is significantly important for autonomous driving. Besides, we
also report the FID scores of different methods in Table 3 and
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Fig. 5. The qualitative photo-to-caricature translation results of different methods on IIIT-CFW (Mishra et al., 2016) dataset.
Fig. 6. The qualitative comparison between different methods on night2day translation task for autonomous driving.
e
a
r
d
p
n
o
T
s

t
o
t
p
t
o
(
p

Table 4
Quantitative comparison of defogging task on Foggy Cityscapes (Sakaridis
et al., 2018) dataset. The experiments are conducted under image resolution
1024 × 512.
Method SSIM↑ PSNR↑ LPIPS↓ FID↓ mIoU↑

MUNIT (Huang et al., 2018) 0.8601 24.17 0.3731 88.12 43.12
Ana-MUNIT 0.8872 25.26 0.3656 71.98 46.34
UNIT (Liu et al., 2017) 0.8571 23.56 0.3894 108.4 41.92
Ana-UNIT 0.8696 24.71 0.3792 89.54 44.76

our AnaGAN achieves the best score. Our AnaGAN can perform
reasonable night-to-day translation to enhance the recognition
performance under adverse conditions.

4.5. Discussion and future work

General strategy. The proposed AnaGAN is also a general strategy
to analogical learning for unpaired I2I tasks. We can also incor-
porate our method with other unsupervised learning methods
such as MUNIT (Huang et al., 2018) and UNIT (Liu et al., 2017)
(termed Ana-MUNIT and Ana-UNIT) and achieve a remarkable
performance gain without introducing the extra parameters (see
Table 4).

Influence of k. In this part, we first aim to demonstrate that
the content-based image matching system Φ could pick up the
172
effective samples with similar content representations under the
cross-domain setting. To quantitatively measure the retrieval per-
formance of the pre-trained Φ , we adopted the Recall@K proto-
col (Song, Xiang, Jegelka, & Savarese, 2016) as the main evaluation
metric. We have reported the R@1, R@10, R@20, R@50 and R@100
precision in Table 5. To better illustrate the difference between
the proposed metric-based sampling strategy and the previous
random sampling strategy, we further investigate the sampling
fficiency under various settings. Given one random x from X, we
ssume that Y has one specific sample y, which matches x. For the
andom sampling strategy, the sampling efficiency is 1

n when the
omain Y has n training samples. The sampling efficiency of the
roposed metric-based sampling strategy is 1

k×R@k since we only
eed to sample from the positive pool. The sampling efficiency
f different settings on Foggy Cityscapes dataset is illustrated in
able 5. We observe that the proposed metric-based sampling
trategy could heavily promote sampling efficiency.
We then explored the influences of choosing different k on

he image translation performance. The quantitative comparison
f using different values of k is shown in Table 6. As reported,
he approximate number of k could lead to better translation
erformance without introducing additional parameters and par-
icularly designed architectures. It is easy for the model to learn
nly from the selected samples when the positive pool is small
with only a few positive training samples) and thus leads to a
erformance drop. A large positive pool with redundant samples
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Table 5
The cross-domain image retrieval results under the Foggy → Clear and Clear → Foggy settings. We adopt a pre-trained ResNet
(He et al., 2016) model on ImageNet (Deng et al., 2009) to obtain the feature vectors after the global average pooling layer and
compute the retrieval precision. Please note that 2975 training pairs are adopted for computing the retrieval precision and sampling
efficiency. The sampling efficiency of the random sampling strategy is 0.0339e−2 .

Foggy → Clear Clear → Foggy

R@1 R@10 R@20 R@50 R@100 R@1 R@10 R@20 R@50 R@100

R@K (%) 1.41 4.71 6.86 10.99 16.24 0.61 2.35 4.24 7.87 12.74

Sampling efficiency (1e−2) 1.41 0.471 0.343 0.220 0.162 0.61 0.235 0.212 0.157 0.127
Table 6
Quantitative comparison of defogging task on Foggy Cityscapes (Sakaridis et al.,
2018) dataset. The symbol ↑ (↓) indicates that the larger (smaller) the value,
the better the performance. The best value is highlighted in bold.
Method k SSIM↑ PSNR↑ LPIPS↓ FID↓ mIoU↑

AnaGAN 1 0.8845 26.37 0.3401 73.45 53.14
AnaGAN 10 0.8901 26.73 0.3336 69.52 53.72
AnaGAN 20 0.8923 26.64 0.3308 72.45 56.04
AnaGAN 50 0.8945 26.87 0.3324 63.23 56.14
AnaGAN 100 0.8865 26.45 0.3363 67.98 55.03

Table 7
Quantitative comparison of defogging task on Foggy Cityscapes (Sakaridis et al.,
2018) dataset. The symbol ↑ (↓) indicates that the larger (smaller) the value,
the better the performance. The best value is highlighted in bold.
Method α SSIM↑ PSNR↑ LPIPS↓ FID↓ mIoU↑

AnaGAN 1.0 0.8797 26.35 0.3367 77.98 54.87
AnaGAN 1.5 0.8967 26.92 0.3246 68.24 54.32
AnaGAN 2.0 0.8945 26.87 0.3324 63.23 56.14
AnaGAN 5.0 0.8927 26.52 0.3354 67.93 54.36

Table 8
Quantitative FID comparison of using different values of α on photo-to-caricature
nd night-to-day translation tasks. Lower is better.
Method α Photo-to-caricature Night-to-day

AnaGAN 1.0 61.76 84.21
AnaGAN 1.5 51.72 73.67
AnaGAN 2.0 47.27 75.14
AnaGAN 5.0 54.19 87.82

makes it very difficult for the model to learn reasonable and
effective translation functions. There is a tradeoff between trans-
lation performance and sampling efficiency. Finally, we have to
admit the selection of k is dependent on the vision translation
ask and the dataset. It requires some empirical priors to do the
yper-parameter selection.

hoice of α. We also explored the quantitative results of choosing
ifferent values of α on the above three vision translation tasks.
he quantitative comparison of using different α is reported in

Table 7 and Table 8, respectively. α = 2.0 leads to the highest
IoU score in Table 7, which indicates the translated images
ould better serve for the downstream semantic segmentation
ask. In Table 8, we achieved the best translation performance
hen α = 2.0 on photo-to-caricature task while α = 1.5 on

night-to-day task. An approximate α could promote the trans-
lation performance by enhancing the analogical learning ability.
With the dual analogical adversarial loss, our method can better
utilize the content similarity and relevant relationships between
samples and alleviate the influence of the negative samples.

Influence of negative samples. In this paper, we argue that the
samples with content mismatch could result in the performance
degradation of the unpaired I2I task. We have designed corre-
sponding defogging experiments on Foggy Cityscapes (Sakaridis
et al., 2018) dataset. In detail, we choose CycleGAN as the baseline
backbone and the original CycleGAN sample (x, y) randomly form
173
Table 9
Quantitative comparison of defogging task on Foggy Cityscapes (Sakaridis
et al., 2018) dataset. The experiments are conducted under image resolution
1024 × 512.
Method SSIM↑ PSNR↑ LPIPS↓ FID↓ mIoU↑

CycleGAN (Zhu et al., 2017) 0.8789 25.91 0.3612 72.12 48.15
CycleGAN-Neg 0.8745 25.56 0.3678 83.76 43.76

X and Y, separately. Based on CycleGAN, for each x, we formulate
a negative sample subset Yn(yn|x) with k samples {yin|x}

k
1 from

Y with most irrelevant content features. Similarly, for y, we
formulate a negative sample subset Xn(xn|y). (x, yn) and (y, xn)
are adopted for unpaired training following the same experimen-
tal setup of CycleGAN. We denote this modified CycleGAN as
CycleGAN-Neg. The quantitative results of the original CycleGAN
and CycleGAN-Neg are reported in Table 9. As illustrated, when
CycleGAN is only optimized by the sampled data with a content
mismatch, there would be visible performance degradation.

Future Work: End-to-end Manner: in our paper, we adopt an
offline pre-trained model to compute the content similarity to
formulate the analogical learning. The metric learning network
is not optimized with the unpaired I2I model through the train-
ing process. We target to train a learnable engine to select the
efficient samples for the adversarial training and optimize the
whole framework in an end-to-end manner, while the losses of
different stages can be transferred to each other task. With the
joint training, the analogical retrieval and the unpaired I2I could
benefit mutually. We leave this as our future work.

5. Conclusion

In this paper, to address the content mismatch caused by
the random sampling strategy used in previous unpaired I2I
methods, we introduced a novel analogical learning-based gener-
ative adversarial network method termed ‘‘AnaGAN’’ to boost the
performance of unpaired I2I translation. With an effective metric-
based sampling strategy, the model could utilize the content
relationships between training samples to achieve more effective
adversarial training. Besides this, we have also designed a dual
analogical adversarial loss to force the model to learn from the
effective samples and alleviate the influence of negative irrele-
vant samples. Comprehensive experiments and ablation studies
have been conducted to illustrate the superior performance of the
proposed method. Our method is also a generic solution and can
be extended to other methods can achieve a performance gain.
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