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ABSTRACT2

Underwater depth prediction plays an important role in underwater vision research. Because of3
the complex underwater environment, it is extremely difficult and expensive to obtain underwater4
datasets with reliable depth annotation. Thus, underwater depth map estimation with a data-5
driven manner is still a challenging task. To tackle this problem, we propose an end-to-end6
system including two different modules for underwater image synthesis and underwater depth7
map estimation, respectively. The former module aims to translate the hazy in-air RGB-D images8
to multi-style realistic synthetic underwater images while retaining the objects and the structural9
information of the input images. Then we construct a semi-real RGB-D underwater dataset using10
the synthesized underwater images and the original corresponding depth maps. We conduct11
supervised learning to perform depth estimation through the pseudo paired underwater RGB-D12
images. Comprehensive experiments have demonstrated that the proposed method can generate13
multiple realistic underwater images with high fidelity, which can be applied to enhance the14
performance of monocular underwater image depth estimation. Furthermore, the trained depth15
estimation model can be applied to real underwater image depth map estimation. We will release16
our codes and experimental setting in https://github.com/ZHAOQIII/UW_depth.17

Keywords: Underwater vision, underwater depth map estimation, underwater image translation, generative adversarial network,18
image-to-image translation19

1 INTRODUCTION
As an important part of underwater robotics and 3D reconstruction, underwater depth prediction is crucial20
for underwater vision research. However, the quality of collected images is restricted by light refraction21
and absorption, suspended particles in the water, and color distortion, making it difficult and challenging22
to obtain reliable underwater depth maps. Due to the influence of strong absorption and scattering, some23
widely used devices designed to obtain in-air depth maps, such as Kinect units (Dancu et al., 2014),24
lidar (Churnside et al., 2017) and binocular stereo cameras (Deris et al., 2017), exhibit limited performance25
in underwater environments (Massot-Campos and Oliver-Codina, 2015; Pérez et al., 2020). As quite a26
few underwater RGB-D datasets (Akkaynak and Treibitz, 2019) (Gomez Chavez et al., 2019) (Berman27
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et al., 2020) are currently available, many researchers have sought to adopt image processing methods to28
estimate the depth from a single monocular underwater image or a consecutive underwater image sequence.29
To perform single monocular underwater depth prediction, several restoration-based methods have been30
developed (e.g. UDCP (Drews et al., 2016)) (Ueda et al., 2019). The transmission map is regarded as an31
intermediate step for obtaining depth maps and restoring underwater images. In theory, the physical process32
is highly dependent on the calibrated intrinsic parameters and the well-described structural information33
of the scene. However, it is extremely laborious to select and measure these parameters relevant to the34
physical process (Abas et al., 2019), and limited to some special task.35

Recently, deep learning methods have shown great potential in image processing (Li et al., 2018)36
applications, such as image-to-image translation (Zhu et al., 2017a; Choi et al., 2018; Isola et al., 2017;37
Wang et al., 2018c; Zheng et al., 2020), image restoration (Peng et al., 2015) and depth estimation (Gupta38
and Mitra, 2019). Due to the lack of the underwater depth ground truth to formulate full supervision,39
supervised learning models cannot be directly adopted for underwater depth estimation. Due to the40
introduction of cycle-consistency loss designed for unpaired image-to-image translation, many researchers41
aim to translate the in-air images to the desired underwater images and preserve the original depth42
annotation (Li et al., 2017, 2018; Gupta and Mitra, 2019). With the synthetic underwater images from43
the original in-air images paired with the corresponding depth annotation, we can obtain the pseudo44
underwater and depth image pairs. Previous methods such as WaterGAN (Li et al., 2017) and UMGAN (Li45
et al., 2018) adopted a two-stage optimization framework for underwater depth estimation. The former46
underwater image synthesis and the downstream vision task (such as depth prediction or underwater image47
restoration) are optimized separately. The two models have no direct connection at the training stage.48
UW-Net (Gupta and Mitra, 2019) has addressed this problem and aims to perform underwater image49
synthesis and underwater depth estimation parallel. However, two competitive tasks with cycle-consistent50
learning lead to low training efficiency and inaccurate depth estimation outputs. The leakage of texture is51
another challenge. The depth value of a fish should be about equal. However, the bright color and textures52
of a fish may lead to an incorrect depth estimation result(Figure 1(b)-(e)).53

(a) Input (b) DCP (c) UDCP (d) Berman et al. (e) UW-Net (f) Ours

Figure 1. Examples of texture leakage during the underwater depth map estimation process using different
methods. (a)real underwater images. (b)DCP (He et al., 2010), (c)UDCP (Drews et al., 2016), (d) Berman
et al. (Berman et al., 2017), (e) UW-Net (Gupta and Mitra, 2019), (f) ours.
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To address these problems, we propose a novel joint-training generative adversarial network for both54
multi-style underwater image synthesis and depth estimation performed in an end-to-end manner. For the55
former image synthetic task, we aim to transfer the hazy in-air RGB-D images to multi-style underwater56
images while retaining the objects and the structural information of the in-air images and controlling the57
underwater style through one conditional input message. To take advantage of multi-task learning (Zhang58
and Yang, 2017) between underwater image synthetic and depth estimation tasks, we design a joint-training59
generator to estimate the depth from the synthesized underwater images through full supervision. Overall,60
our system includes two consecutive generators (responsible for the underwater image synthesis and61
underwater depth estimation, separately), which are trained simultaneously. To ensure that the generated62
underwater images retain the objects and the structural information of the in-air images, we consider63
perceptual loss (Johnson et al., 2016) computed at the selected layers as a structural loss along with the64
adversarial loss to optimize the whole network. Furthermore, we develop a depth loss to alleviate the65
texture leakage phenomenon as shown in Figure 1. Finally, we evaluate the effectiveness of our proposed66
method to synthesize underwater images and estimate the depth map of real underwater images, and the67
comprehensive experimental results demonstrate the superiority of the proposed method. Overall, our main68
contributions of this paper are summarized as follows:69

• We propose a novel joint-training generative adversarial network, which can simultaneously handle the70
controllable translation from the hazy RGB-D images to the multi-style realistic underwater images by71
combining one additional label, and the depth prediction from both the synthetic and real underwater72
images.73

• To construct a semi-real underwater RGB-D dataset, we take the hazy in-air RGB-D image pairs and74
conditional labels as inputs to synthesize multi-style underwater images. During the training process,75
we introduce perceptual loss to preserve the objects and structural information of the in-air images76
during the image-to-image translation process.77

• To improve the results of underwater depth estimation, we design the depth loss to make better use of78
high-level and low-level information. We verify the effectiveness of our proposed method on a real79
underwater dataset.80

2 RELATED WORK
2.1 Image-to-Image Translation81

In the past several years, a series of image-to-image translation methods based on generative adversarial82
networks (GANs) (Odena et al., 2017; Mirza and Osindero, 2014) have been proposed. These approaches83
can mainly be divided into two categories of paired training and unpaired training methods. Pix2pix (Isola84
et al., 2017) is a typical powerful paired model and first proposes cGAN (Mirza and Osindero, 2014) learns85
the one-side mapping function from the input images to target images. To achieve the image-to-image86
translation of unpaired datasets, CycleGAN (Zhu et al., 2017a) translates images into two domains using87
two generators and two discriminators and proposes the cycle-consistent loss to tackle the mode collapse of88
unpaired image translation. To address the multimodal problem, methods including BicycleGAN (Zhu et al.,89
2017b), MUNIT (Huang et al., 2018), DRIT (Lee et al., 2018), StarGAN (Choi et al., 2018), etc. have been90
proposed. The BicycleGAN (Zhu et al., 2017b) learns to transfer the given input with a low-dimensional91
latent code to more diverse results. It takes advantage of the bijective consistency between the latent and92
target spaces to avoid the mode collapse problem. MUNIT (Huang et al., 2018) achieves multidomain93
translation by assuming two latent representations that present style and content respectively and combining94
different representations of content and style. StarGAN Choi et al. (2018) learns multiple mapping functions95
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Figure 2. The network framework of our proposed model is designed to synthesize multi-style underwater
images and estimate underwater depth maps. The generator Gs and the discriminator Ds are used to
synthesize multi-style underwater images, and the generator Gd and discriminator Dd learn to estimate
underwater depth map based on the synthesized underwater RGB-D dataset.

between multiple domains. It only uses a single generator and a discriminator to transfers the source images96
to the target domain. Then to avoid mode collapse, the generator takes the generated images and the original97
labels as input and transfers them to the original domain. The subsequently developed image-to-image98
translation methods, such as pix2pixHD (Wang et al., 2018c), GauGAN (Park et al., 2019), vid2vid (Wang99
et al., 2018b), FUNIT (Liu et al., 2019), NICE-GAN (Chen et al., 2020) and StarGAN v2 (Choi et al.,100
2020) pay more attention to generate higher visual quality, multiple outputs and have been applied in video101
and small sample studies.102

To synthesize underwater images, due to the lack of a large paired underwater image dataset, studies103
have mainly focused on unsupervised learning. In a pioneering approach of underwater image synthesis,104
WaterGAN (Li et al., 2017) synthesized the underwater images from the in-air image and the paired105
depth map for real-time color correction of monocular underwater images. To achieve multidomain106
translation, UMGAN (Li et al., 2018) proposes an unsupervised method that combines CycleGAN (Zhu107
et al., 2017a) and cGAN (Mirza and Osindero, 2014) with an additional style classifier to synthesize108
multi-style underwater images. UW-Net developed by Gupta et al. (Gupta and Mitra, 2019) learns the109
mapping functions between unpaired hazy RGB-D images and arbitrary underwater images to synthesize110
underwater images and estimate the underwater depth map. This method translates the hazy RGB-D image111
to underwater images while it learns to convert underwater images to the hazy RGB-D images. However,112
WaterGAN (Li et al., 2017) and UW-Net (Gupta and Mitra, 2019) only provide a solution for single domain113
underwater image generation. UMGAN (Li et al., 2018) does not consider the transmission map as an114
extra clue to generate underwater images. Moreover, all of the synthesized underwater images using these115
methods still lack the characteristics of real underwater images and clear structural information.116
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2.2 Underwater Depth Map Estimation117

Underwater depth map estimation has mainly been studied in the field of traditional image processing.118
Since He et al. (He et al., 2010) first proposed a dark channel prior (DCP) for dehazing, many methods119
based on DCP (He et al., 2010) have been proposed for underwater depth map estimation in recent years.120
Drews et al. (Drews et al., 2016) proposed a method based on a physical model of light propagation and121
the statistical priors of the scene to obtain the medium transmission and scene depth in typical underwater122
scenarios. Peng et al. (Peng et al., 2015) proposed a three-step approach consisting of pixel blurriness123
estimation, rough depth map generation, and depth map refinement for depth map estimation. Berman124
et al. (Berman et al., 2017) took different optical underwater types into account and proposed a more125
comprehensive physical image formation model to recover the distance maps and object colors. They126
mainly considered transmission map estimation as an intermediate step to obtain a depth map. Due to the127
unknown scattering parameters and multiple possible solutions, the results of these methods are most likely128
to be incorrect (Gupta and Mitra, 2019).129

Recently, many deep learning-based methods have been proposed for depth estimation. However, most130
of these approaches focus on depth estimation from in-air RGB images with full supervision, which are131
not suitable for underwater depth map estimation due to the lack of the paired RGB-D data. The above132
mentioned UW-Net developed by Gupta et al. (Gupta and Mitra, 2019) proposed an unsupervised method133
to learn depth map estimation. It considers an in-air transmission map as a cue to synthesize underwater134
images and obtains the required depth map from the synthesized underwater images. However, this method135
cannot estimate the depth map from underwater images of multiple water types. Because two competitive136
tasks (hazy in-air image reconstruction and depth estimation) are assigned to one generator, the depth137
prediction results of UW-Net lack sharp outlines. Ye et al. proposed another unsupervised adaptation138
networks Ye et al. (2019). They developed a joint learning framework which can handle underwater depth139
estimation and color correction tasks simultaneously. Unlike their work, in which the two networks (style140
adaptation network and task network) should be trained separately, our model is more simple and can be141
trained simultaneously. The depth loss and a fine-tune strategy make our model more efficient in practice142
for underwater depth map prediction.143

3 MATERIALS AND METHODS
3.1 Overall Framework144

In this paper, we aim to estimate the depth map from real underwater images. Because there are no paired145
underwater RGB-D images, we cannot perform supervised learning directly. Therefore, we choose to146
translate the original in-air images with corresponding depth to underwater images and obtain pseudo-paired147
images. To perform this task, we design an end-to-end system with two joint-training modules: multi-style148
underwater image synthesis and underwater depth estimation based on the synthetic paired samples.149
The former module is trained through unpaired training, while the latter adopts supervised training to150
achieve precise underwater depth estimation. The overall framework is shown in Figure 2 and consists151
of two generators, namely, Gs: x → ỹ and Gd: ỹ → d̃, where x and ỹ are the original in-air image and152
the synthesized underwater image with specific underwater style. d̃ is the estimated depth output. For153
discrimination, we also design two discriminators Ds and Dd to perform adversarial training to boost the154
underwater image synthesis and depth estimation, respectively. Ds aims to distinguish between real and155
fake images and identify the domains from which both the real images and the generated images originate.156
The discriminator Dd only learns to distinguish between the real and fake depth maps.157
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multi-style underwater image synthesis. As shown in Figure 2, we refer to the training of StarGAN (Choi158
et al., 2018) to generate multi-style underwater images. To synthesize specified underwater style images,159
we adopt an additional one-hot vector c to represent domain attributes. To make the generator Gs depth-160
aware and preserve the original depth representation after translation, we concatenate the three inputs,161
namely, the in-air image (x), the target underwater style (cy), and the corresponding in-air depth (d)162
to synthesize an underwater image ỹ = Gs(C(x, d, cy)) with the required style (cy), where C denotes163
depthwise concatenation. To guarantee that the synthetic image ỹ has the target underwater style, we164
include an adversarial domain classifier Ds with two branches (one for domain classification and another165
for real/fake discrimination). The classification branch with the domain classification loss Lcls aims to166
recognize the underwater style (cy) of both the synthesized image ỹ and the real underwater image y. Noted167
that y does not have the corresponding depth annotation due to the lack of underwater ground truth. The168
adversarial loss Lsadv is computed to promote the naturalness of the synthetic images. The generator Gs169
from CycleGAN (Zhu et al., 2017a) and StarGAN (Choi et al., 2018) is one symmetric encoder-decoder170
architecture with 6 residual blocks.171

Underwater depth estimation. In the training stage, we perform underwater estimation on the above-172
mentioned synthetic underwater images ỹ by adopting a generator Gd with dense-block architectures.173
The output of generator Gs (ỹ) is the input of generator Gd used to estimate its depth map Gd(ỹ).174
Considering that we have the depth annotation d of the in-air images, we can obtain pseudo pairs to175
compute the Ldepth between d and d̃. The discriminatorDd is also designed and has only one discrimination176
output. Furthermore, the adversarial loss Ldadv in the depth space is conducted. For underwater depth177
map estimation, we use DenseNet (Jégou et al., 2017) as the generator. In UW-Net (Gupta and Mitra,178
2019), the authors proved the importance of using hazy above-water images and compared the results of179
underwater depth maps estimation with different generator networks, including ResNet (He et al., 2016),180
Unet (Ronneberger et al., 2015), DenseNet (Jégou et al., 2017) and so on. In their work, DenseNet is181
proved to be the best choice.182

3.2 Loss Functions183

3.2.1 multi-style underwater image synthesis184

Adversarial Loss. Regular GANs use sigmoid activation output and the cross-entropy loss185
function (Goodfellow et al., 2014), which may cause a vanishing gradient during the learning process. To186
stabilize the training process and generate underwater images with higher quality, we adapt the least-squares187
loss (Mao et al., 2017) in our method. Lsadv can be expressed as follows:188

Lsadv = min
G

max
D
{Ex, y ∼ Pdta(x, y)[(Ds(y)− 1)2]

+ Ex∼Pdata(x)[(Ds(ỹ)2]},

where ỹ = Gs(C(x, d, cy))),

(1)

where Gs targets the transfer of a hazy in-air RGB-D image x by concatenating an underwater condition189
label cy to synthesize image Gs(C(x, d, cy)). The discriminator Ds attempts to distinguish the real190
underwater image y and the synthesized underwater image ỹ.191

Domain Classification Loss. For the given hazy in-air image x and an underwater domain style cy, Gs192
translates x into an underwater image ỹ, which can be properly classified to the desired target domain by193
Ds. To achieve this goal, the classification branch of Ds imposes the domain classification. For the real194
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underwater image y, the domain classification loss Lrcls is computed as:195

Lrcls = Ey,cy [− logDs(cy|y)]. (2)

where the termDs(cy|y) denotes a probability distribution over the underwater domain labels (cy) computed196
by Ds. By minimizing this objective, Ds learns to classify an underwater image y to its original domain197
cy. We assume that the underwater image and domain label pair (y, cy) is given by the training data. For198
generator Gs, the loss function for the domain classification of synthetic underwater images is defined as:199

Lfcls = Eỹ,cy [− logDs(cy|ỹ)]. (3)

During the training, Gs tries to synthesize underwater image ỹ that can fool the classification branch of Ds.200

Feature-level loss. Beyond the pixel-level loss, we design feature-level loss functions between the feature201
representations extracted from a pre-trained VGG19 network. The hybrid feature-level loss can effectively202
preserve the similarity of the object between the hazy in-air images and the synthesized underwater images.203
For the multi-style underwater image synthesis, we introduce a perceptual loss, namely, Lsyn. Lsyn is204
designed to preserve the object content and loosen the restrictions on the color and textile changes after205
translation. Lsyn is expressed as follows:206

Lsyn = [||Φ(i)(x)− Φ(i)(Gs(x|cy))||1]. (4)

where Φ(i) denotes the parameters at the i-th layer of a pre-trained VGG19 network. Following the work207
by Kupyn et al. (Kupyn et al., 2019), we compute the 1-norm distance at the same selected i = 14 layer of208
the VGG19 network between the hazy in-air images and the synthesized underwater images.209

Reconstruction Loss. To perform unpaired training between in-air and underwater images, we include the210
cycle consistency loss (Zhu et al., 2017a) in our framework. The reconstruction loss Lrec between x̂ and x211
is defined as follows:212

Lrec = Ex,cy,cx [||x− x̂||1],
x̂ = Gs(C(Gs(C(x, d, cy)), d, cx)),

(5)

where cx and cy indicate the original hazy in-air domain label and the target underwater domain style,213
respectively. Gs takes the counterpart Gs(x|cy), its corresponding depth, and the original domain label cx as214
input and tries to reconstruct the original hazy in-air image. We adapt the L1 loss as our reconstruction loss.215
Note that we use the generator Gs twice, first to translate the hazy in-air RGB-D images into an underwater216
image in the target domain and then to reconstruct the hazy in-air RGB images from the translated images.217

3.2.2 Underwater depth estimation218

Adversarial Loss. For the second underwater depth estimation procedure, the adversarial loss Ldadv is219
described as:220

Ldadv = min
G

max
D
{EGs(ỹ),d∼Pdata(ỹ,d)[(Dd(d)− 1)2]

+ Eỹ∼Pdata(ỹ)[(Dd(d̃))2]},

where d̃ = Gd(Gs(C(x, d, cy))),

(6)
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where Gd learns the mapping function from the synthesized underwater images ỹ to the in-air depth d as221
Gd(ỹ)→ d. Dd is responsible to recognize the fake ingredient from the synthesized depth output d̃.222

Depth loss. For underwater depth estimation, the pixel-level distance between the estimated value and the223
ground truth, such as 1-norm and 2-norm, is generally adopted to favor less blurring. However, we find224
that only the pixel-level loss between the predicted depth map and the ground truth often leads to poor225
performance due to the influences of noise, water with various turbidity, etc (Please refer to section 4.3226
for more details). To force the model to pay more attention to the objects, we make use of the feature227
representations extracted from a pre-trained VGG19 network for multi-level information. We also introduce228
pixel-level distance for low-level details. Finally, to obtain improved results, we combine 1-norm loss and229
the multi-layer feature constraint between d̃ and d and define the depth loss, namely Ldepth:230

Ldepth = [||d−Gd(Gs(x|cy))||1] +
N∑
i=0

[||Φ(i)(d)− Φ(i)(Gd(Gs(x|cy)))||1]. (7)

Similarly, Φ(i) represents the pre-trained parameter of the i-th layer. Here, following the work of Wang231
et al. (Wang et al., 2018c) and Wang et al. (Wang et al., 2018a), we compute the L1 distance at the same232
selected 6 layers: i = 1, 6, 11, 20, 29.233

3.3 Full Objective234

Finally, the objective functions can be written, respectively, as:235

LDs = Lsadv + αLrcls (8)
236

LGs = Lsadv + γLrec + αLfcls + λLsyn (9)
237

LDd
= Ldadv (10)

238
LGd

= Ldadv + ηLdepth (11)

where α, γ, λ and η are the hyperparameters that control the effect of each loss in the final objective239
function. We set α = 5, γ = 10, λ = 0.1, η = 50 in all of our experiments, and we optimize the objective240
function with the Adam optimizer (Kingma and Ba, 2014). To choose appropriate weights, we design241
ablation studies for each hyperparameter except for γ. We follow StarGAN (Choi et al., 2018) to set γ = 10.242
For the choice of the rest of hyperparameters, please refer to Sec. 4.3 for more details.243

4 RESULTS
4.1 Datasets and Implementation Details244

In our experiments, we translate the hazy in-air images to two underwater domains (green and blue). We245
also choose the hazy in-air D-Hazy dataset (Ancuti et al., 2016) as the input images; this dataset contains the246
indoor scenes. For the two underwater domains, we adapt the real underwater images from the SUN (Xiao247
et al., 2010), URPC 1, EUVP (Islam et al., 2020), UIEB (Li et al., 2019) and Fish datasets 2. We collect248
1,031 blue and 1,004 green underwater images from these datasets and the Google website, respectively.249
The D-Hazy dataset (Ancuti et al., 2016) includes 1,449 images. We randomly choose 1,300 images as the250
in-air images x to train the model. The remaining 149 images of the dataset are selected for evaluation.251

1 http://www.cnurpc.org/
2 http://www.fishdb.co.uk/
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We use random-crop to obtain 128× 128 patches for training. For the evaluation stage, we take complete252
images of 256× 256. The entire network is trained on one Nvidia GeForce GTX 1070 using the Pytorch253
framework. To avoid the mode collapse problem, we apply spectral normalization (Miyato et al., 2018) in254
both the discriminators and the generators. Because of the introduction of spectral normalization (Miyato255
et al., 2018), we use a two-timescale update rule (TTUR) based on BigGAN (Brock et al., 2018) and256
SAGAN (Zhang et al., 2018). The Adam algorithm is applied with a learning rate of 0.0002 for the257
discriminators while 0.00005 for the generators. Because of the limited computing resources, we set the258
batch size to 10 and perform 100,000 training iterations in our experiments.259

4.2 Comparison Methods260

Our method achieves underwater depth map estimation using multi-style synthesized underwater images.261
In this section, we first evaluate the performance of WaterGAN (Li et al., 2017), CycleGAN (Zhu et al.,262
2017a), StarGAN (Choi et al., 2018), UW-Net (Gupta and Mitra, 2019), StarGAN v2 (Choi et al., 2020)263
and our method on multiple synthetic underwater images. Additionally, to evaluate the effectiveness264
of underwater depth map estimation, we compare the results obtained using DCP (He et al., 2010),265
UDCP (Drews et al., 2016), Berman et al. (Berman et al., 2017), Gupta et al. (Gupta and Mitra, 2019) and266
our method.267

4.2.1 Qualitative Evaluation268

To evaluate the effectiveness of the proposed method, we perform underwater image synthesis on the269
NYUv2 (Silberman et al., 2012) and D-Hazy (Ancuti et al., 2016) datasets. Figure 3 shows a visual270
comparison of the synthesized underwater images generated by different methods. WaterGAN (Li et al.,271
2017) takes advantage of in-air RGB-D images to synthesize underwater images. As shown in Figure 3(b),272
the results are somewhat single-hued and lack water characteristics. Although WaterGAN supports multi-273
style image generation, the two styles (blue and green) obtained by WaterGAN in Figure 3(b) are difficult274
to distinguish. The results of CycleGAN (Zhu et al., 2017a) retain most of the contents and structures of275
the original images. Compared to WaterGAN, they are similar to the natural underwater scenes shown in276
Figure 3(c). By contrast, the outputs of CycleGAN (Zhu et al., 2017a) include serious distortions of the277
details of the image with incorrect depth information. StarGAN (Choi et al., 2018) can simultaneously278
translate in-air images into multiple underwater styles. However, the results lack the characteristics of real279
underwater images, such as depth information, and clear structural information of the objects. Besides,280
many artifacts are observed in Figure 3(d). UW-Net (Gupta and Mitra, 2019) also takes hazy in-air RGB-D281
images as input, the results are presented in Figure 3(e) and show fuzzy structures for the objects. The282
results of StarGAN v2 (Choi et al., 2020) are shown in Figure 3(f). There is no denying that StarGAN283
v2 (Choi et al., 2020) possesses a powerful style network to extract style codes from reference images.284
However, the underwater images provided by StarGAN v2 fail to help the depth estimation tasks. As285
shown in Figure 3(f), StarGAN v2 removed some objects and structural information during the image286
synthetic process, which makes the synthetic underwater images and their corresponding in-air depth maps287
unmatched. The quantitative results in section 4.2.2 further confirm this point.288

Our model is optimized to synthesize underwater images with multiple styles based on the unpaired289
datasets. The results of our method (Figure 3(g)), in which the structural information is well preserved, are290
better than those obtained from other methods in terms of visual quality.291

For underwater depth map estimation, Figure 4 shows the results of our method and other methods292
developed by He et al. (DCP) (He et al., 2010), Drews et al. (UDCP) (Drews et al., 2016), Berman et293
al. (Berman et al., 2017) and Gupta et al. (Gupta and Mitra, 2019) based on the underwater images obtained294
by Berman et al. (Berman et al., 2017). In Figure 4(b)-4(d), these methods fail to capture relative depth of295
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(a) In-air (b) WaterGAN (c) CycleGAN (d) StarGAN (e) UW-Net (f) StarGAN v2 (g) Ours

Figure 3. Comparison of the visual quality of synthesized underwater images obtained by different
methods. From left to right, (a) are original in-air images, (b)–(g) are the results of the WaterGAN (Li et al.,
2017), CycleGAN (Zhu et al., 2017a), StarGAN (Choi et al., 2018), UW-Net (Gupta and Mitra, 2019),
StarGAN v2 (Choi et al., 2020) and our method.

the scene with respect to the camera. Moreover, these methods mainly obtain the transmission maps of296
the scene and have excessive texture leakage in the results. Gupta et al. (Gupta and Mitra, 2019) used an297
unsupervised method to estimate the depth map, obtaining the results shown in Figure 4(e), and this method298
appears to be better than the other methods, whose results are presented in Figure 4(b)-4(d). However, this299
method still suffers from excessive texture leakage and only estimates the depth map for single-domain300
underwater images. Our results have a much more reasonable appearance with a linear depth variation. On301
the other hand, we observe that our network successfully captures the depth information from multi-style302
underwater images. More results for real underwater images with different underwater characteristics are303
seen in Figure 5. Furthermore, the UW-Net (Gupta and Mitra, 2019) and our method synthesize underwater304
images using the underwater dataset provided by Berman et al. (Berman et al., 2017) to fine-tune the305
models of the depth map estimation. We fine-tune our model for 10,000 iterations on Berman et al.’s306
dataset for better depth map estimation.307

4.2.2 Quantitative Evaluation308

The dataset of Berman et al. (Berman et al., 2017) consists of 114 paired underwater RGB-D images309
from Katzaa, Michmoret, Nachsholim, and Satil. We use 71 images belonging to the three regions Katzaa,310
Nachsholim, and Satil. Because the Michmoret region has very few natural objects and is of the same311
scene. Following UW-Net (Gupta and Mitra, 2019), we use two metrics for comparison, namely, log312
scale-invariant mean squared error (SI-MSE) (Eigen et al., 2014) and the Pearson correlation coefficient313
(ρ). Considering the fact that the depth map provided by the stereo camera is not complete (e.g. the ground314
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(a) Input (b) DCP (c) UDCP (d) Berman et al. (e) UW-Net (f) Ours (g) GT

Figure 4. Comparison of our method with other underwater depth estimation methods. From left to right,
(a) are real underwater images from the dataset of Berman et al. (Berman et al., 2017), (b)–(f) are the
results of DCP (He et al., 2010), UDCP (Drews et al., 2016), Berman et al. (Berman et al., 2017), Gupta et
al. (Gupta and Mitra, 2019) and our method, and (g) are the ground truths.

truth of the white regions in Figure 7(h) are not provided), we only calculate the pixels with a defined315
depth-value in the ground truth (GT).316

The underwater image synthesis assists to estimate depth maps from real underwater images. Thus, how317
much the synthetic underwater images can be used to boost the performance of underwater image-based318
depth prediction is the key evaluation index. We evaluate performance on depth prediction tasks with a319
series of the state-of-the-art methods, which consist of WaterGAN (Li et al., 2017), CycleGAN (Zhu et al.,320
2017a), StarGAN (Choi et al., 2018), UW-Net (Gupta and Mitra, 2019) and StarGAN v2 (Choi et al., 2020).321
We aim to calculate the depth map estimation results on a semi-real underwater RGB-D dataset. UW-Net322
suggests that fine-tuning the models with a few unlabeled images from the target underwater environment323
could further boost the depth prediction performance. During the fine-tuning process, we only use the RGB324
underwater images without considering the depth ground truth of the data from Berman et al. to show the325
ability that our model can adapt itself to a new environment well. To make it fair, we fine-tune all models326
to generate a similar underwater style of the dataset of Berman et al..327

Although our model already provides a solution for a depth estimation task, we choose a typical328
independent supervised image-to-image model, pix2pix (Isola et al., 2017), to fairly evaluate the potential329
of synthetic underwater images on the application of depth prediction. We use identical pix2pix models330
to learn the mapping function between the generate underwater images of different underwater image331
synthetic methods and their corresponding in-air depth maps. Finally, we test and evaluate all models on332
the dataset of Berman et al.. Table 1 shows the results, and our model obtains higher ρ values and lower333
SI-MSE.334

For the underwater depth estimation task, Table 2 shows the quantitative results. Our method obtains the335
least scale-invariant error (SI-MSE) (Eigen et al., 2014) and the highest Pearson correlation coefficient (ρ).336
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Figure 5. The results of our model for depth map estimation. Every two rows from top to bottom are real
underwater images with different illumination and scattering conditions and the results of our model for
depth map estimation.

We also investigate the parameters and Floating Point Operations Tan and Le (2019) (FLOPs) among337
different generators in Table 3. In the case of CycleGAN, we only count the FLOPs and parameters of a338
single generator. We can find that the proposed method can achieve better performance with fewer network339
parameters and computational cost. Benefiting from the dense blocks, the Gd of our model has fewer340
parameters and FLOPs than Gs. Please note that Gs is only used in training stage. In testing phase, we341
only need Gd to estimate the depth map.342

Table 1. Quantitative comparison of our method and other methods for underwater image synthesis.
We evaluate all models for underwater depth map estimation using the generated RGB-D datasets. FT
represents a fine-tuned (FT) underwater model on the dataset of Berman et al. (Berman et al., 2017). Higher
ρ values and lower SI-MSE (Eigen et al., 2014) values represent a better result.

ine WaterGAN (FT) CycleGAN (FT) StarGAN (FT) UW-Net (FT) StarGAN v2 (FT) Our (FT)
ine SI-MSE 0.5994 0.3514 0.4597 0.3594 0.5454 0.2709

ine ρ 0.5031 0.6024 0.5339 0.5795 0.4561 0.6917
ine

This is a provisional file, not the final typeset article 12



Sample et al. Running Title

Table 2. Quantitative comparison of our method and other methods on the dataset of Berman et al. (Berman
et al., 2017). FT represents a fine-tuned (FT) underwater model. Higher ρ values and lower SI-MSE (Eigen
et al., 2014) values represent a better result.

ine DCP UDCP Berman et al. UW-Net(FT) Ours(FT)
ine SI-MSE 1.3618 0.6966 0.6755 0.3708 0.1771

ine ρ 0.2968 0.4894 0.6448 0.6451 0.7796
ine

4.3 Ablation Study343

4.3.1 Loss Selection of Underwater image Synthesis344

To preserve clear structural information, we consider the perceptual loss Lsyn, structural similarity index345
(SSIM) Lssim, and multiscale structural similarity index (MS-SSIM) Lmsssim as the structural loss. We346
evaluate the efficiency of each loss, including Lsyn, Lssim and Lmsssim, and based on the visual effect347
of the synthesized underwater images and the results of depth map estimation, we choose the perceptual348
loss. To verify the effectiveness of the extra losses in our network, we design ablation experiments and349
perform a comparison on D-Hazy (Ancuti et al., 2016) which consists of 1449 images. Figure 6 shows that350
each loss affects the quality of the generated underwater images. It is observed from Figure 6(b), that the351
generated underwater images using ResNet without any extra loss have more color blocks and artifacts.352
Additionally, during the training, it is extremely unstable and tends to produce color inversions and serious353
distortions situations. In Figure 6(c)− Figure 6(d), many artifacts are still retained for ResNet with Lssim354
or Lmsssim. Table 4 shows the results of depth map estimation based on different synthetic underwater355
image datasets, which are generated by ResNet and ResNet with extra losses, separately. Using Lsyn, we356
obtain the best results of underwater depth map estimation. Based on the experiments mentioned above, we357
introduce a perceptual loss Lsyn to preserve the details and restrain the artifacts in Figure 6(e). To minimize358
the negative effects of the synthesized images, we design experiments to determine the proper weight of α359
and λ. In Table 5, we show the results of different weights, including α and λ. We note that both UW-Net360
and our model can be fine-tuned on the dataset of Berman et al. to obtain better results of underwater361
depth map estimation. Fine-tuning processing provides a flexible approach for adjusting our model and the362
estimation of depth maps from unexplored underwater regions within a relatively short period.363

4.3.2 The Design of Underwater Depth Map Estimation364

With the support of synthetic paired RGB-D data, we consider L1 loss, L2 loss, Lssim loss, or Lmsssim365
loss to learn the mapping functions for supervised depth map prediction. During the training, we observe the366
all above-mentioned losses are not enough to generate more correct depth maps. The results in Figure 7(b)367
- 7(e) show that depth prediction based on the above-mentioned losses are easily affected by the shape,368
noise, etc. As mentioned in section 3.2.2, we design depth loss Ldepth to make better use of low-level and369

Table 3. Comparison of Floating Point Operations (FLOPs) and total number of parameters among
different generators with a size of 256× 256

ine Methods FLOPs Params
ine StarGAN Choi et al. (2018) 52.32 8.417
CycleGAN Zhu et al. (2017a) 56.83 11.38
StarGANv2 Choi et al. (2020) 198.0 33.89

WaterGAN Li et al. (2017) 132.7 24.18
Ours (Gs) 52.93 8.426
Ours (Gd) 12.98 1.348

ine
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(a) In-air images (b) Baseline (c) w/ Lssim (d) w/ Lmsssim (e) w/ Lsyn
Figure 6. Sample results of our method for synthesizing underwater images using different losses. Lssim,
Lmsssim and Lsyn respectively represent SSIM loss, MS-SSIM loss and perceptual loss. (a) are in-air
images, (b) are the results without any structural loss (Baseline), (c)–(e) are the results with Lssim, Lmsssim
and Lsyn, respectively.

Table 4. Comparison of our method for the synthesis of underwater images with different combinations.
ResNet (He et al., 2016) represents a basic network for the synthesis of underwater images (Baseline). Our
synthesized underwater images are mainly used to estimate depth maps. We show the results of depth maps
estimation using ResNet (He et al., 2016) and ResNet (He et al., 2016) with extra losses.

ine Baseline w/ Lssim w/ Lmsssim w/ LDd
w/ Lsyn

ine SI-MSE 0.3538 0.2308 0.3331 0.2864 0.1771
ine ρ 0.6986 0.7547 0.7111 0.7355 0.7796
ine

Table 5. Comparison of weights used in the objective function of our model, including α and λ. We
separately set α = 1, 3, 5, 7 and λ = 0.05, 0.1, 0.2, 0.4. We discover that α = 5 and λ = 0.1 perform better.

ine SI-MSE/ρ α = 1 α = 3 α = 5 α = 7
ine λ = 0.05 0.2586/0.7438 0.2676/0.7502 0.2325/0.7593 0.2957/0.7402
ine λ = 0.1 0.2291/0.7513 0.2020/0.7844 0.1771/0.7796 0.2321/0.7717
ine λ = 0.2 0.2955/0.7331 0.2164/0.7688 0.2548/0.7524 0.2535/0.7331
ine λ = 0.4 0.2966/0.7236 0.2882/0.7306 0.2929/0.7499 0.2577/0.7577

ine

high-level feature information and avoid the risk of texture leakage. We take advantage of a pre-trained370
VGG19 network to extract feature maps between the generated depth maps and the ground truths. We371
assume the feature maps between the generated depth map and its corresponding ground truth in each372
layer from a pre-trained VGG19 network should be equal. The loss Ldepth makes our model pay more373
attention to the objects and the relative distance in the underwater images. Inspired by Wang et al.’s374
work (Wang et al., 2018a), we also attempt to extract feature maps from the discriminator Dd, namely375
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(a) Input (b) L1 (c) L2 (d) Lssim (e) Lmsssim (f) Lpan (g) Ldepth (h) GT

Figure 7. Effectiveness evaluation of the L1, L2, Lssim, Lmsssim and Ldepth. From left to right,
respectively, (a) are real underwater images, (b)–(h) are the results of depth map estimation with L1
loss, L2 loss, Lssim, Lmsssim, Lpan, Ldepth and their corresponding ground truths.

Lpan, rather than a pre-trained VGG19 network. In Figure 7(f), we can see that our model with Lpan are376
often overwhelmed with incorrect boundary prediction due to the insufficient layers of our discriminator377
Dd to extract high-level feature maps comparing with Ldepth. Furthermore, we investigate the optimal378
parameter setting of η with a greedily searching strategy (Table 7), and we discover that η = 50 is the best379
choice among all the parameters.380

Based on Figure 7 and Table 6, we can easily conclude that the results of depth map estimation using381
Ldepth loss are more accurate and continuous. The results show sharper outlines. We can clearly distinguish382
the relative distance and the objects.383
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Table 6. Quantitative comparison of our method with different losses on the dataset of Berman et
al. (Berman et al., 2017). Higher ρ values and lower SI-MSE (Eigen et al., 2014) values indicate better
results.

ine L1 L2 Lssim Lmsssim Lpan Ldepth
ine SI-MSE 0.3103 0.2896 0.3983 0.2598 0.2856 0.1771

ine ρ 0.7279 0.7419 0.6515 0.7655 0.7397 0.7796
ine

Table 7. Results with different η values. Higher ρ and lower SI-MSE (Eigen et al., 2014) values are better.
ine η = 40 η = 50 η = 60 η = 70

ine SI-MSE 0.2657 0.1771 0.2620 0.2405
ine ρ 0.7266 0.7796 0.7315 0.7635
ine

5 DISCUSSIONS AND CONCLUSION
To further explore the potential of our model on depth prediction, we considered the work by Li et al. (Li384
et al., 2018) and prepared a more complex underwater image dataset including 4 different styles. In this385
experiment, we still consider the depth map as a conditional input to synthesize a corresponding underwater386
image. But we did not utilize the physical parameters (e.g., the water turbidity or any optical parameters)387
for the unpaired image-to-image translation. Instead, we roughly divide the images with different water388
turbidity into 4 groups and follow the manner of StarGAN Choi et al. (2018) to perform conditional image389
translation. Some synthetic examples of 4 different styles are shown in Figure 8. Due to the lack of ground390
truth of the depth map, we cannot quantitatively evaluate the effectiveness of our model for multi-style391
underwater depth map estimation. Instead, we prepared several qualitative evaluation results, as shown in392
Figure 9. Intuitively, we find that the depth estimation of a side-view underwater image is better than that393
from a vertical view. This result is caused by the lack of vertical view in-air images from the in-air D-Hazy394
dataset required to produce sufficient synthetic underwater vertical view images. We plan to improve the395
performance on this point by data augmentation in the future.396

In this paper, we proposed an end-to-end system that can synthesize multi-style underwater images397
using one-hot encoding and estimate underwater depth maps. The system can convert the in-air RGB-D398
images into more realistic underwater images with multiple watercolor styles. Then we use the synthesized399
underwater RGB images to construct a semi-real underwater RGB-D dataset. With the synthetic underwater400
RGB-D dataset, our model can learn to estimate underwater depth maps using supervised learning. Finally,401
we compare our method with existing state-of-the-art methods to synthesize underwater images and estimate402
underwater depth maps, and we verify that our method outperforms these methods both qualitatively and403
quantitatively. Furthermore, our model can be fine-tuned on the untrained datasets to synthesize a similar404
underwater style. It effectively makes our model to be applied for depth map estimation on new underwater405
datasets.406
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(a) In-air images (b) Blue (c) Green (d) White (e) Yellow

Figure 8. Sample results for the synthesis of underwater images. (a) show in-air images. (b)–(e) represent
blue style, green style, white style and yellow style, respectively.
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Figure 9. multi-style underwater depth map estimation. The rows from top to bottom are real underwater
images with four different water types and the results of our model for depth map estimation. Every two
rows are real underwater images and their predicted depth maps of our method.
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APPENDIX
Generator architectures. In our experiments, the generator Gs from CycleGAN (Zhu et al., 2017a)532
and StarGAN (Choi et al., 2018) can be described as Figure 10. Here, Convolution denotes a 7 × 7533
Convolution-InstanceNorm-ReLU layer with 64 filters and stride 1. Convolution/down denotes a 4 ×534
4 Convolution-InstanceNorm-ReLU layer and stride 2. Residual block denotes a residual block that535
contains two 3× 3 Convolution-InstanceNorm-ReLU layers with the same number of filters on both layers.536
Deconvolution denotes a 4× 4 fractional-strided-Convolution-InstanceNorm-ReLU layer and stride 2.537

The generator Gd from Jégou et al. (Jégou et al., 2017) is based on dense-block (DB), as Figure 11.538
Convolution denotes a 3× 3 Convolution-BatchNorm-ReLU layer with 32 filters and stride 1. Transition539
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Figure 10. The network architecture of the generator Gs. It is a general ResNet (He et al., 2016) network
for image-to-image translation .

Figure 11. The network architecture of the generator Gd. Following the work of UW-Net (Gupta and
Mitra, 2019), we choose DenseNet (Jégou et al., 2017) as the generator Gd.

down is a maxpool2d operation with the same number of filters and a 1× 1 Convolution-BatchNorm-ReLU540
layer with the same number of filters and stride 1. Transition up denotes a 4× 4 deconvolution layer with541
the same number of filters and stride 2. Dense block denotes four 3× 3 BatchNorm-ReLU-Convolution542
layers with 12 filters and stride 1. The output channel number of the dense block is the concatenation from543
the output of four layers and the input. The encoder and the decoder concatenate with skip connection.544
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Discriminator architectures. For discriminator networks, we use 70 × 70 PatchGANs (Isola et al.,545
2017; Zhu et al., 2017a). Similarly, we do not use InstanceNorm or BatchNorm in any layer and use leaky546
ReLUs with a slope of 0.2. The discriminator Ds has two outputs from the discrimination branch and the547
classification branch. Differently, the discriminator Dd only has one discrimination output.548
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